Spaces:
Sleeping
Sleeping
EtienneB
commited on
Commit
·
9349849
1
Parent(s):
f255c6e
start over
Browse files- agent-old.py +70 -0
- agent.py +0 -70
- app-old.py +523 -0
- app.py +126 -423
agent-old.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
from typing import Annotated, TypedDict
|
| 3 |
+
|
| 4 |
+
from langchain_community.chat_models import ChatHuggingFace
|
| 5 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 6 |
+
from langchain_core.messages import AIMessage, AnyMessage, HumanMessage
|
| 7 |
+
from langgraph.graph import START, StateGraph
|
| 8 |
+
from langgraph.graph.message import add_messages
|
| 9 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 10 |
+
|
| 11 |
+
from retriever import guest_info_tool
|
| 12 |
+
from tools import (absolute, add, divide, exponential, floor_divide,
|
| 13 |
+
get_current_time_in_timezone, logarithm, modulus, multiply,
|
| 14 |
+
power, roman_calculator_converter, square_root, subtract,
|
| 15 |
+
web_search)
|
| 16 |
+
|
| 17 |
+
# Generate the chat interface, including the tools
|
| 18 |
+
llm = HuggingFaceEndpoint(
|
| 19 |
+
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 20 |
+
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
chat = ChatHuggingFace(llm=llm, verbose=True)
|
| 24 |
+
tools = [
|
| 25 |
+
multiply,
|
| 26 |
+
add,
|
| 27 |
+
subtract,
|
| 28 |
+
power,
|
| 29 |
+
divide,
|
| 30 |
+
modulus,
|
| 31 |
+
square_root,
|
| 32 |
+
floor_divide,
|
| 33 |
+
absolute,
|
| 34 |
+
logarithm,
|
| 35 |
+
exponential,
|
| 36 |
+
web_search,
|
| 37 |
+
roman_calculator_converter,
|
| 38 |
+
get_current_time_in_timezone,
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
chat_with_tools = chat.bind_tools(tools)
|
| 42 |
+
|
| 43 |
+
# Generate the AgentState and Agent graph
|
| 44 |
+
class AgentState(TypedDict):
|
| 45 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
| 46 |
+
|
| 47 |
+
def assistant(state: AgentState):
|
| 48 |
+
return {
|
| 49 |
+
"messages": [chat_with_tools.invoke(state["messages"])],
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
## The graph
|
| 53 |
+
builder = StateGraph(AgentState)
|
| 54 |
+
|
| 55 |
+
# Define nodes: these do the work
|
| 56 |
+
builder.add_node("assistant", assistant)
|
| 57 |
+
builder.add_node("tools", ToolNode(tools))
|
| 58 |
+
|
| 59 |
+
# Define edges: these determine how the control flow moves
|
| 60 |
+
builder.add_edge(START, "assistant")
|
| 61 |
+
builder.add_conditional_edges(
|
| 62 |
+
"assistant",
|
| 63 |
+
# If the latest message requires a tool, route to tools
|
| 64 |
+
# Otherwise, provide a direct response
|
| 65 |
+
tools_condition,
|
| 66 |
+
)
|
| 67 |
+
builder.add_edge("tools", "assistant")
|
| 68 |
+
alfred = builder.compile()
|
| 69 |
+
|
| 70 |
+
"""
|
agent.py
CHANGED
|
@@ -1,70 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
from typing import Annotated, TypedDict
|
| 3 |
-
|
| 4 |
-
from langchain_community.chat_models import ChatHuggingFace
|
| 5 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
| 6 |
-
from langchain_core.messages import AIMessage, AnyMessage, HumanMessage
|
| 7 |
-
from langgraph.graph import START, StateGraph
|
| 8 |
-
from langgraph.graph.message import add_messages
|
| 9 |
-
from langgraph.prebuilt import ToolNode, tools_condition
|
| 10 |
-
|
| 11 |
-
from retriever import guest_info_tool
|
| 12 |
-
from tools import (absolute, add, divide, exponential, floor_divide,
|
| 13 |
-
get_current_time_in_timezone, logarithm, modulus, multiply,
|
| 14 |
-
power, roman_calculator_converter, square_root, subtract,
|
| 15 |
-
web_search)
|
| 16 |
-
|
| 17 |
-
# Generate the chat interface, including the tools
|
| 18 |
-
llm = HuggingFaceEndpoint(
|
| 19 |
-
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 20 |
-
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
chat = ChatHuggingFace(llm=llm, verbose=True)
|
| 24 |
-
tools = [
|
| 25 |
-
multiply,
|
| 26 |
-
add,
|
| 27 |
-
subtract,
|
| 28 |
-
power,
|
| 29 |
-
divide,
|
| 30 |
-
modulus,
|
| 31 |
-
square_root,
|
| 32 |
-
floor_divide,
|
| 33 |
-
absolute,
|
| 34 |
-
logarithm,
|
| 35 |
-
exponential,
|
| 36 |
-
web_search,
|
| 37 |
-
roman_calculator_converter,
|
| 38 |
-
get_current_time_in_timezone,
|
| 39 |
-
]
|
| 40 |
-
|
| 41 |
-
chat_with_tools = chat.bind_tools(tools)
|
| 42 |
-
|
| 43 |
-
# Generate the AgentState and Agent graph
|
| 44 |
-
class AgentState(TypedDict):
|
| 45 |
-
messages: Annotated[list[AnyMessage], add_messages]
|
| 46 |
-
|
| 47 |
-
def assistant(state: AgentState):
|
| 48 |
-
return {
|
| 49 |
-
"messages": [chat_with_tools.invoke(state["messages"])],
|
| 50 |
-
}
|
| 51 |
-
|
| 52 |
-
## The graph
|
| 53 |
-
builder = StateGraph(AgentState)
|
| 54 |
-
|
| 55 |
-
# Define nodes: these do the work
|
| 56 |
-
builder.add_node("assistant", assistant)
|
| 57 |
-
builder.add_node("tools", ToolNode(tools))
|
| 58 |
-
|
| 59 |
-
# Define edges: these determine how the control flow moves
|
| 60 |
-
builder.add_edge(START, "assistant")
|
| 61 |
-
builder.add_conditional_edges(
|
| 62 |
-
"assistant",
|
| 63 |
-
# If the latest message requires a tool, route to tools
|
| 64 |
-
# Otherwise, provide a direct response
|
| 65 |
-
tools_condition,
|
| 66 |
-
)
|
| 67 |
-
builder.add_edge("tools", "assistant")
|
| 68 |
-
alfred = builder.compile()
|
| 69 |
-
|
| 70 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app-old.py
ADDED
|
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
import inspect
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
from typing import Any, Dict, List, Optional
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import requests
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
from langchain_community.chat_models import ChatHuggingFace
|
| 13 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 14 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
| 15 |
+
from langchain_core.tools import StructuredTool
|
| 16 |
+
|
| 17 |
+
from tools import (absolute, add, divide, exponential, floor_divide,
|
| 18 |
+
get_current_time_in_timezone, logarithm, modulus, multiply,
|
| 19 |
+
power, roman_calculator_converter, square_root, subtract,
|
| 20 |
+
web_search)
|
| 21 |
+
|
| 22 |
+
# --- Constants ---
|
| 23 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 24 |
+
MAX_AGENT_ITERATIONS = 15
|
| 25 |
+
MAX_CONCURRENT_REQUESTS = 5 # Limit concurrent requests to avoid overwhelming the API
|
| 26 |
+
|
| 27 |
+
load_dotenv()
|
| 28 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HF_TOKEN")
|
| 29 |
+
|
| 30 |
+
# Quick test to see if tokens are available.
|
| 31 |
+
print(f"Available env vars: {[k for k in os.environ.keys() if 'TOKEN' in k or 'HF' in k]}")
|
| 32 |
+
|
| 33 |
+
# Global cache for answers
|
| 34 |
+
answer_cache = {}
|
| 35 |
+
|
| 36 |
+
class ImprovedAgent:
|
| 37 |
+
def __init__(self):
|
| 38 |
+
if not HUGGINGFACEHUB_API_TOKEN:
|
| 39 |
+
raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")
|
| 40 |
+
|
| 41 |
+
print("ImprovedAgent initialized.")
|
| 42 |
+
|
| 43 |
+
# Initialize LLM with better parameters
|
| 44 |
+
self.llm = HuggingFaceEndpoint(
|
| 45 |
+
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 46 |
+
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
| 47 |
+
temperature=0.1, # Lower temperature for more consistent responses
|
| 48 |
+
max_new_tokens=1024,
|
| 49 |
+
timeout=30,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
self.chat = ChatHuggingFace(llm=self.llm, verbose=False)
|
| 53 |
+
|
| 54 |
+
# Initialize tools
|
| 55 |
+
self.tools = [
|
| 56 |
+
multiply, add, subtract, power, divide, modulus,
|
| 57 |
+
square_root, floor_divide, absolute, logarithm,
|
| 58 |
+
exponential, web_search, roman_calculator_converter,
|
| 59 |
+
get_current_time_in_timezone
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
self.chat_with_tools = self.chat.bind_tools(self.tools)
|
| 63 |
+
print(f"Total tools available: {len(self.tools)}")
|
| 64 |
+
|
| 65 |
+
# Create tool mapping for easier access
|
| 66 |
+
self.tool_map = {tool.name: tool for tool in self.tools}
|
| 67 |
+
|
| 68 |
+
def _extract_tool_calls(self, response) -> List[Dict]:
|
| 69 |
+
"""Extract tool calls from the response"""
|
| 70 |
+
tool_calls = []
|
| 71 |
+
if hasattr(response, 'tool_calls') and response.tool_calls:
|
| 72 |
+
for tool_call in response.tool_calls:
|
| 73 |
+
tool_calls.append({
|
| 74 |
+
'name': tool_call['name'],
|
| 75 |
+
'args': tool_call['args']
|
| 76 |
+
})
|
| 77 |
+
return tool_calls
|
| 78 |
+
|
| 79 |
+
def _execute_tool_calls(self, tool_calls: List[Dict]) -> List[str]:
|
| 80 |
+
"""Execute tool calls and return results"""
|
| 81 |
+
results = []
|
| 82 |
+
for tool_call in tool_calls:
|
| 83 |
+
tool_name = tool_call['name']
|
| 84 |
+
tool_args = tool_call['args']
|
| 85 |
+
|
| 86 |
+
if tool_name in self.tool_map:
|
| 87 |
+
try:
|
| 88 |
+
tool = self.tool_map[tool_name]
|
| 89 |
+
result = tool.invoke(tool_args)
|
| 90 |
+
results.append(f"Tool {tool_name} result: {result}")
|
| 91 |
+
except Exception as e:
|
| 92 |
+
results.append(f"Tool {tool_name} error: {str(e)}")
|
| 93 |
+
else:
|
| 94 |
+
results.append(f"Unknown tool: {tool_name}")
|
| 95 |
+
|
| 96 |
+
return results
|
| 97 |
+
|
| 98 |
+
async def answer(self, question: str) -> str:
|
| 99 |
+
"""Improved answer method with better error handling and tool usage"""
|
| 100 |
+
print(f"Processing question: {question[:100]}...")
|
| 101 |
+
|
| 102 |
+
try:
|
| 103 |
+
# Create system prompt for better instruction following
|
| 104 |
+
system_prompt = """You are a helpful AI assistant with access to various tools.
|
| 105 |
+
When answering questions, use the appropriate tools when needed and provide clear, concise answers.
|
| 106 |
+
If you need to perform calculations, use the math tools available.
|
| 107 |
+
If you need current information, use the web search tool.
|
| 108 |
+
Always provide a final answer after using tools."""
|
| 109 |
+
|
| 110 |
+
messages = [
|
| 111 |
+
HumanMessage(content=f"{system_prompt}\n\nQuestion: {question}")
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
# Initial response
|
| 115 |
+
response = await asyncio.to_thread(self.chat_with_tools.invoke, messages)
|
| 116 |
+
|
| 117 |
+
# Handle tool calls if present
|
| 118 |
+
max_iterations = 3
|
| 119 |
+
iteration = 0
|
| 120 |
+
|
| 121 |
+
while iteration < max_iterations:
|
| 122 |
+
tool_calls = self._extract_tool_calls(response)
|
| 123 |
+
|
| 124 |
+
if not tool_calls:
|
| 125 |
+
break
|
| 126 |
+
|
| 127 |
+
# Execute tool calls
|
| 128 |
+
tool_results = self._execute_tool_calls(tool_calls)
|
| 129 |
+
|
| 130 |
+
# Add tool results to conversation
|
| 131 |
+
messages.append(AIMessage(content=response.content))
|
| 132 |
+
messages.append(HumanMessage(content=f"Tool results: {'; '.join(tool_results)}. Please provide a final answer based on these results."))
|
| 133 |
+
|
| 134 |
+
# Get next response
|
| 135 |
+
response = await asyncio.to_thread(self.chat_with_tools.invoke, messages)
|
| 136 |
+
iteration += 1
|
| 137 |
+
|
| 138 |
+
# Extract final answer
|
| 139 |
+
final_answer = response.content.strip()
|
| 140 |
+
|
| 141 |
+
# Clean up the response - remove any tool call artifacts
|
| 142 |
+
if "Tool " in final_answer and "result:" in final_answer:
|
| 143 |
+
# Try to extract just the final answer part
|
| 144 |
+
lines = final_answer.split('\n')
|
| 145 |
+
for line in reversed(lines):
|
| 146 |
+
if line.strip() and not line.startswith('Tool ') and not 'result:' in line:
|
| 147 |
+
final_answer = line.strip()
|
| 148 |
+
break
|
| 149 |
+
|
| 150 |
+
return final_answer
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print(f"Error in answer method: {e}")
|
| 154 |
+
return f"Error processing question: {str(e)}"
|
| 155 |
+
|
| 156 |
+
def answer_sync(self, question: str) -> str:
|
| 157 |
+
"""Synchronous version of answer method"""
|
| 158 |
+
try:
|
| 159 |
+
return asyncio.run(self.answer(question))
|
| 160 |
+
except Exception as e:
|
| 161 |
+
print(f"Error in sync answer: {e}")
|
| 162 |
+
return f"Error: {str(e)}"
|
| 163 |
+
|
| 164 |
+
async def process_questions_batch(agent, questions_batch, semaphore):
|
| 165 |
+
"""Process a batch of questions with rate limiting"""
|
| 166 |
+
results = []
|
| 167 |
+
|
| 168 |
+
async def process_single_question(task_id, question):
|
| 169 |
+
async with semaphore:
|
| 170 |
+
try:
|
| 171 |
+
# Check cache first
|
| 172 |
+
cache_key = f"{task_id}_{hash(question)}"
|
| 173 |
+
if cache_key in answer_cache:
|
| 174 |
+
print(f"Using cached answer for task {task_id}")
|
| 175 |
+
return task_id, question, answer_cache[cache_key], None
|
| 176 |
+
|
| 177 |
+
answer = await agent.answer(question)
|
| 178 |
+
|
| 179 |
+
# Cache the result
|
| 180 |
+
answer_cache[cache_key] = answer
|
| 181 |
+
|
| 182 |
+
return task_id, question, answer, None
|
| 183 |
+
except Exception as e:
|
| 184 |
+
print(f"Error processing task {task_id}: {e}")
|
| 185 |
+
return task_id, question, None, str(e)
|
| 186 |
+
|
| 187 |
+
# Create semaphore for rate limiting
|
| 188 |
+
tasks = []
|
| 189 |
+
for item in questions_batch:
|
| 190 |
+
task_id = item.get("task_id")
|
| 191 |
+
question_text = item.get("question")
|
| 192 |
+
if task_id and question_text is not None:
|
| 193 |
+
tasks.append(process_single_question(task_id, question_text))
|
| 194 |
+
|
| 195 |
+
if tasks:
|
| 196 |
+
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 197 |
+
|
| 198 |
+
return results
|
| 199 |
+
|
| 200 |
+
async def run_agent_async_improved(agent, questions_data):
|
| 201 |
+
"""Improved async processing with batching and caching"""
|
| 202 |
+
results_log, answers_payload = [], []
|
| 203 |
+
|
| 204 |
+
# Create semaphore for rate limiting
|
| 205 |
+
semaphore = asyncio.Semaphore(MAX_CONCURRENT_REQUESTS)
|
| 206 |
+
|
| 207 |
+
# Process questions in batches
|
| 208 |
+
batch_size = 10
|
| 209 |
+
batches = [questions_data[i:i + batch_size] for i in range(0, len(questions_data), batch_size)]
|
| 210 |
+
|
| 211 |
+
print(f"Processing {len(questions_data)} questions in {len(batches)} batches...")
|
| 212 |
+
|
| 213 |
+
for i, batch in enumerate(batches):
|
| 214 |
+
print(f"Processing batch {i+1}/{len(batches)} ({len(batch)} questions)...")
|
| 215 |
+
|
| 216 |
+
try:
|
| 217 |
+
batch_results = await process_questions_batch(agent, batch, semaphore)
|
| 218 |
+
|
| 219 |
+
for result in batch_results:
|
| 220 |
+
if isinstance(result, Exception):
|
| 221 |
+
print(f"Batch processing error: {result}")
|
| 222 |
+
continue
|
| 223 |
+
|
| 224 |
+
task_id, question, answer, error = result
|
| 225 |
+
|
| 226 |
+
if error:
|
| 227 |
+
print(f"Error in task {task_id}: {error}")
|
| 228 |
+
results_log.append({
|
| 229 |
+
"Task ID": task_id,
|
| 230 |
+
"Question": question[:100] + "..." if len(question) > 100 else question,
|
| 231 |
+
"Submitted Answer": f"ERROR: {error}"
|
| 232 |
+
})
|
| 233 |
+
else:
|
| 234 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
| 235 |
+
results_log.append({
|
| 236 |
+
"Task ID": task_id,
|
| 237 |
+
"Question": question[:100] + "..." if len(question) > 100 else question,
|
| 238 |
+
"Submitted Answer": answer[:200] + "..." if len(answer) > 200 else answer
|
| 239 |
+
})
|
| 240 |
+
|
| 241 |
+
# Small delay between batches to be respectful
|
| 242 |
+
if i < len(batches) - 1:
|
| 243 |
+
await asyncio.sleep(1)
|
| 244 |
+
|
| 245 |
+
except Exception as e:
|
| 246 |
+
print(f"Error processing batch {i+1}: {e}")
|
| 247 |
+
# Continue with next batch
|
| 248 |
+
continue
|
| 249 |
+
|
| 250 |
+
return results_log, answers_payload
|
| 251 |
+
|
| 252 |
+
def cache_answers(profile: gr.OAuthProfile | None):
|
| 253 |
+
"""Cache answers without submitting"""
|
| 254 |
+
if not profile:
|
| 255 |
+
return "Please log in to Hugging Face first.", None
|
| 256 |
+
|
| 257 |
+
username = profile.username
|
| 258 |
+
print(f"Caching answers for user: {username}")
|
| 259 |
+
|
| 260 |
+
# Fetch questions
|
| 261 |
+
api_url = DEFAULT_API_URL
|
| 262 |
+
questions_url = f"{api_url}/questions"
|
| 263 |
+
|
| 264 |
+
try:
|
| 265 |
+
response = requests.get(questions_url, timeout=15)
|
| 266 |
+
response.raise_for_status()
|
| 267 |
+
questions_data = response.json()
|
| 268 |
+
|
| 269 |
+
if not questions_data:
|
| 270 |
+
return "No questions found.", None
|
| 271 |
+
|
| 272 |
+
print(f"Fetched {len(questions_data)} questions for caching.")
|
| 273 |
+
|
| 274 |
+
# Initialize agent
|
| 275 |
+
try:
|
| 276 |
+
agent = ImprovedAgent()
|
| 277 |
+
except Exception as e:
|
| 278 |
+
print(f"Full error details: {e}")
|
| 279 |
+
return f"Error initializing agent: {e}", None
|
| 280 |
+
|
| 281 |
+
# Process questions
|
| 282 |
+
results_log, answers_payload = asyncio.run(run_agent_async_improved(agent, questions_data))
|
| 283 |
+
|
| 284 |
+
# Store in global cache with username
|
| 285 |
+
answer_cache[f"user_{username}"] = answers_payload
|
| 286 |
+
|
| 287 |
+
status = f"Cached {len(answers_payload)} answers for user {username}. Ready to submit!"
|
| 288 |
+
results_df = pd.DataFrame(results_log)
|
| 289 |
+
|
| 290 |
+
return status, results_df
|
| 291 |
+
|
| 292 |
+
except Exception as e:
|
| 293 |
+
print(f"Error caching answers: {e}")
|
| 294 |
+
return f"Error caching answers: {e}", None
|
| 295 |
+
|
| 296 |
+
def submit_cached_answers(profile: gr.OAuthProfile | None):
|
| 297 |
+
"""Submit previously cached answers"""
|
| 298 |
+
if not profile:
|
| 299 |
+
return "Please log in to Hugging Face first.", None
|
| 300 |
+
|
| 301 |
+
username = profile.username
|
| 302 |
+
cache_key = f"user_{username}"
|
| 303 |
+
|
| 304 |
+
if cache_key not in answer_cache:
|
| 305 |
+
return "No cached answers found. Please run 'Cache Answers' first.", None
|
| 306 |
+
|
| 307 |
+
answers_payload = answer_cache[cache_key]
|
| 308 |
+
|
| 309 |
+
if not answers_payload:
|
| 310 |
+
return "No answers to submit.", None
|
| 311 |
+
|
| 312 |
+
# Get space info
|
| 313 |
+
space_id = os.getenv("SPACE_ID")
|
| 314 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
|
| 315 |
+
|
| 316 |
+
# Submit
|
| 317 |
+
api_url = DEFAULT_API_URL
|
| 318 |
+
submit_url = f"{api_url}/submit"
|
| 319 |
+
|
| 320 |
+
submission_data = {
|
| 321 |
+
"username": username.strip(),
|
| 322 |
+
"agent_code": agent_code,
|
| 323 |
+
"answers": answers_payload
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
try:
|
| 327 |
+
print(f"Submitting {len(answers_payload)} cached answers...")
|
| 328 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 329 |
+
response.raise_for_status()
|
| 330 |
+
result_data = response.json()
|
| 331 |
+
|
| 332 |
+
final_status = (
|
| 333 |
+
f"Submission Successful!\n"
|
| 334 |
+
f"User: {result_data.get('username')}\n"
|
| 335 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 336 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 337 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# Clear cache after successful submission
|
| 341 |
+
if cache_key in answer_cache:
|
| 342 |
+
del answer_cache[cache_key]
|
| 343 |
+
|
| 344 |
+
return final_status, None
|
| 345 |
+
|
| 346 |
+
except Exception as e:
|
| 347 |
+
print(f"Submission error: {e}")
|
| 348 |
+
return f"Submission failed: {e}", None
|
| 349 |
+
|
| 350 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 351 |
+
"""
|
| 352 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 353 |
+
and displays the results.
|
| 354 |
+
"""
|
| 355 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 356 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 357 |
+
|
| 358 |
+
if profile:
|
| 359 |
+
username= f"{profile.username}"
|
| 360 |
+
print(f"User logged in: {username}")
|
| 361 |
+
else:
|
| 362 |
+
print("User not logged in.")
|
| 363 |
+
return "Please Login to Hugging Face with the button.", None
|
| 364 |
+
|
| 365 |
+
api_url = DEFAULT_API_URL
|
| 366 |
+
questions_url = f"{api_url}/questions"
|
| 367 |
+
submit_url = f"{api_url}/submit"
|
| 368 |
+
|
| 369 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 370 |
+
try:
|
| 371 |
+
agent = BasicAgent()
|
| 372 |
+
except Exception as e:
|
| 373 |
+
print(f"Error instantiating agent: {e}")
|
| 374 |
+
return f"Error initializing agent: {e}", None
|
| 375 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 376 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 377 |
+
print(agent_code)
|
| 378 |
+
|
| 379 |
+
# 2. Fetch Questions
|
| 380 |
+
print(f"Fetching questions from: {questions_url}")
|
| 381 |
+
try:
|
| 382 |
+
# Using the retry function instead of direct request
|
| 383 |
+
response = make_request_with_retry(questions_url)
|
| 384 |
+
questions_data = response.json()
|
| 385 |
+
if not questions_data:
|
| 386 |
+
print("Fetched questions list is empty.")
|
| 387 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 388 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 389 |
+
except requests.exceptions.RequestException as e:
|
| 390 |
+
print(f"Error fetching questions: {e}")
|
| 391 |
+
return f"Error fetching questions: {e}", None
|
| 392 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 393 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 394 |
+
print(f"Response text: {response.text[:500]}")
|
| 395 |
+
return f"Error decoding server response for questions: {e}", None
|
| 396 |
+
except Exception as e:
|
| 397 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 398 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
| 399 |
+
|
| 400 |
+
# 3. Run your Agent
|
| 401 |
+
results_log = []
|
| 402 |
+
answers_payload = []
|
| 403 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 404 |
+
for item in questions_data:
|
| 405 |
+
task_id = item.get("task_id")
|
| 406 |
+
question_text = item.get("question")
|
| 407 |
+
if not task_id or question_text is None:
|
| 408 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 409 |
+
continue
|
| 410 |
+
try:
|
| 411 |
+
submitted_answer = agent(question_text)
|
| 412 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 413 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 414 |
+
except Exception as e:
|
| 415 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 416 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 417 |
+
|
| 418 |
+
if not answers_payload:
|
| 419 |
+
print("Agent did not produce any answers to submit.")
|
| 420 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 421 |
+
|
| 422 |
+
# 4. Prepare Submission
|
| 423 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 424 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 425 |
+
print(status_update)
|
| 426 |
+
|
| 427 |
+
# 5. Submit
|
| 428 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 429 |
+
try:
|
| 430 |
+
# Using the retry function for submission as well
|
| 431 |
+
response = make_request_with_retry(submit_url, method="post", json_data=submission_data, timeout=60)
|
| 432 |
+
result_data = response.json()
|
| 433 |
+
final_status = (
|
| 434 |
+
f"Submission Successful!\n"
|
| 435 |
+
f"User: {result_data.get('username')}\n"
|
| 436 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 437 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 438 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
| 439 |
+
)
|
| 440 |
+
print("Submission successful.")
|
| 441 |
+
results_df = pd.DataFrame(results_log)
|
| 442 |
+
return final_status, results_df
|
| 443 |
+
except requests.exceptions.HTTPError as e:
|
| 444 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 445 |
+
try:
|
| 446 |
+
error_json = e.response.json()
|
| 447 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 448 |
+
except requests.exceptions.JSONDecodeError:
|
| 449 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 450 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 451 |
+
print(status_message)
|
| 452 |
+
results_df = pd.DataFrame(results_log)
|
| 453 |
+
return status_message, results_df
|
| 454 |
+
except requests.exceptions.Timeout:
|
| 455 |
+
status_message = "Submission Failed: The request timed out."
|
| 456 |
+
print(status_message)
|
| 457 |
+
results_df = pd.DataFrame(results_log)
|
| 458 |
+
return status_message, results_df
|
| 459 |
+
except requests.exceptions.RequestException as e:
|
| 460 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 461 |
+
print(status_message)
|
| 462 |
+
results_df = pd.DataFrame(results_log)
|
| 463 |
+
return status_message, results_df
|
| 464 |
+
except Exception as e:
|
| 465 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 466 |
+
print(status_message)
|
| 467 |
+
results_df = pd.DataFrame(results_log)
|
| 468 |
+
return status_message, results_df
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
# --- Build Gradio Interface using Blocks ---
|
| 472 |
+
with gr.Blocks() as demo:
|
| 473 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 474 |
+
gr.Markdown(
|
| 475 |
+
"""
|
| 476 |
+
**Instructions:**
|
| 477 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 478 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 479 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 480 |
+
---
|
| 481 |
+
**Disclaimers:**
|
| 482 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 483 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 484 |
+
"""
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
gr.LoginButton()
|
| 488 |
+
|
| 489 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 490 |
+
|
| 491 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 492 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 493 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 494 |
+
|
| 495 |
+
run_button.click(
|
| 496 |
+
fn=run_and_submit_all,
|
| 497 |
+
outputs=[status_output, results_table]
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
if __name__ == "__main__":
|
| 501 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 502 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 503 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 504 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 505 |
+
|
| 506 |
+
if space_host_startup:
|
| 507 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 508 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 509 |
+
else:
|
| 510 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 511 |
+
|
| 512 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 513 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 514 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 515 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 516 |
+
else:
|
| 517 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 518 |
+
|
| 519 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 520 |
+
|
| 521 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 522 |
+
demo.launch(debug=True, share=False)
|
| 523 |
+
|
app.py
CHANGED
|
@@ -1,413 +1,108 @@
|
|
| 1 |
-
import asyncio
|
| 2 |
import inspect
|
| 3 |
-
import json
|
| 4 |
import os
|
| 5 |
-
import time
|
| 6 |
-
from typing import Any, Dict, List, Optional
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import pandas as pd
|
| 10 |
import requests
|
| 11 |
-
from dotenv import load_dotenv
|
| 12 |
-
from langchain_community.chat_models import ChatHuggingFace
|
| 13 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
| 14 |
-
from langchain_core.messages import AIMessage, HumanMessage
|
| 15 |
-
from langchain_core.tools import StructuredTool
|
| 16 |
-
|
| 17 |
-
from tools import (absolute, add, divide, exponential, floor_divide,
|
| 18 |
-
get_current_time_in_timezone, logarithm, modulus, multiply,
|
| 19 |
-
power, roman_calculator_converter, square_root, subtract,
|
| 20 |
-
web_search)
|
| 21 |
|
|
|
|
| 22 |
# --- Constants ---
|
| 23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 24 |
-
MAX_AGENT_ITERATIONS = 15
|
| 25 |
-
MAX_CONCURRENT_REQUESTS = 5 # Limit concurrent requests to avoid overwhelming the API
|
| 26 |
-
|
| 27 |
-
load_dotenv()
|
| 28 |
-
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HF_TOKEN")
|
| 29 |
-
|
| 30 |
-
# Quick test to see if tokens are available.
|
| 31 |
-
print(f"Available env vars: {[k for k in os.environ.keys() if 'TOKEN' in k or 'HF' in k]}")
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
class ImprovedAgent:
|
| 37 |
def __init__(self):
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
get_current_time_in_timezone
|
| 60 |
-
]
|
| 61 |
-
|
| 62 |
-
self.chat_with_tools = self.chat.bind_tools(self.tools)
|
| 63 |
-
print(f"Total tools available: {len(self.tools)}")
|
| 64 |
-
|
| 65 |
-
# Create tool mapping for easier access
|
| 66 |
-
self.tool_map = {tool.name: tool for tool in self.tools}
|
| 67 |
-
|
| 68 |
-
def _extract_tool_calls(self, response) -> List[Dict]:
|
| 69 |
-
"""Extract tool calls from the response"""
|
| 70 |
-
tool_calls = []
|
| 71 |
-
if hasattr(response, 'tool_calls') and response.tool_calls:
|
| 72 |
-
for tool_call in response.tool_calls:
|
| 73 |
-
tool_calls.append({
|
| 74 |
-
'name': tool_call['name'],
|
| 75 |
-
'args': tool_call['args']
|
| 76 |
-
})
|
| 77 |
-
return tool_calls
|
| 78 |
-
|
| 79 |
-
def _execute_tool_calls(self, tool_calls: List[Dict]) -> List[str]:
|
| 80 |
-
"""Execute tool calls and return results"""
|
| 81 |
-
results = []
|
| 82 |
-
for tool_call in tool_calls:
|
| 83 |
-
tool_name = tool_call['name']
|
| 84 |
-
tool_args = tool_call['args']
|
| 85 |
-
|
| 86 |
-
if tool_name in self.tool_map:
|
| 87 |
-
try:
|
| 88 |
-
tool = self.tool_map[tool_name]
|
| 89 |
-
result = tool.invoke(tool_args)
|
| 90 |
-
results.append(f"Tool {tool_name} result: {result}")
|
| 91 |
-
except Exception as e:
|
| 92 |
-
results.append(f"Tool {tool_name} error: {str(e)}")
|
| 93 |
-
else:
|
| 94 |
-
results.append(f"Unknown tool: {tool_name}")
|
| 95 |
-
|
| 96 |
-
return results
|
| 97 |
-
|
| 98 |
-
async def answer(self, question: str) -> str:
|
| 99 |
-
"""Improved answer method with better error handling and tool usage"""
|
| 100 |
-
print(f"Processing question: {question[:100]}...")
|
| 101 |
-
|
| 102 |
-
try:
|
| 103 |
-
# Create system prompt for better instruction following
|
| 104 |
-
system_prompt = """You are a helpful AI assistant with access to various tools.
|
| 105 |
-
When answering questions, use the appropriate tools when needed and provide clear, concise answers.
|
| 106 |
-
If you need to perform calculations, use the math tools available.
|
| 107 |
-
If you need current information, use the web search tool.
|
| 108 |
-
Always provide a final answer after using tools."""
|
| 109 |
-
|
| 110 |
-
messages = [
|
| 111 |
-
HumanMessage(content=f"{system_prompt}\n\nQuestion: {question}")
|
| 112 |
-
]
|
| 113 |
-
|
| 114 |
-
# Initial response
|
| 115 |
-
response = await asyncio.to_thread(self.chat_with_tools.invoke, messages)
|
| 116 |
-
|
| 117 |
-
# Handle tool calls if present
|
| 118 |
-
max_iterations = 3
|
| 119 |
-
iteration = 0
|
| 120 |
-
|
| 121 |
-
while iteration < max_iterations:
|
| 122 |
-
tool_calls = self._extract_tool_calls(response)
|
| 123 |
-
|
| 124 |
-
if not tool_calls:
|
| 125 |
-
break
|
| 126 |
-
|
| 127 |
-
# Execute tool calls
|
| 128 |
-
tool_results = self._execute_tool_calls(tool_calls)
|
| 129 |
-
|
| 130 |
-
# Add tool results to conversation
|
| 131 |
-
messages.append(AIMessage(content=response.content))
|
| 132 |
-
messages.append(HumanMessage(content=f"Tool results: {'; '.join(tool_results)}. Please provide a final answer based on these results."))
|
| 133 |
-
|
| 134 |
-
# Get next response
|
| 135 |
-
response = await asyncio.to_thread(self.chat_with_tools.invoke, messages)
|
| 136 |
-
iteration += 1
|
| 137 |
-
|
| 138 |
-
# Extract final answer
|
| 139 |
-
final_answer = response.content.strip()
|
| 140 |
-
|
| 141 |
-
# Clean up the response - remove any tool call artifacts
|
| 142 |
-
if "Tool " in final_answer and "result:" in final_answer:
|
| 143 |
-
# Try to extract just the final answer part
|
| 144 |
-
lines = final_answer.split('\n')
|
| 145 |
-
for line in reversed(lines):
|
| 146 |
-
if line.strip() and not line.startswith('Tool ') and not 'result:' in line:
|
| 147 |
-
final_answer = line.strip()
|
| 148 |
-
break
|
| 149 |
-
|
| 150 |
-
return final_answer
|
| 151 |
-
|
| 152 |
-
except Exception as e:
|
| 153 |
-
print(f"Error in answer method: {e}")
|
| 154 |
-
return f"Error processing question: {str(e)}"
|
| 155 |
-
|
| 156 |
-
def answer_sync(self, question: str) -> str:
|
| 157 |
-
"""Synchronous version of answer method"""
|
| 158 |
-
try:
|
| 159 |
-
return asyncio.run(self.answer(question))
|
| 160 |
-
except Exception as e:
|
| 161 |
-
print(f"Error in sync answer: {e}")
|
| 162 |
-
return f"Error: {str(e)}"
|
| 163 |
-
|
| 164 |
-
async def process_questions_batch(agent, questions_batch, semaphore):
|
| 165 |
-
"""Process a batch of questions with rate limiting"""
|
| 166 |
-
results = []
|
| 167 |
-
|
| 168 |
-
async def process_single_question(task_id, question):
|
| 169 |
-
async with semaphore:
|
| 170 |
-
try:
|
| 171 |
-
# Check cache first
|
| 172 |
-
cache_key = f"{task_id}_{hash(question)}"
|
| 173 |
-
if cache_key in answer_cache:
|
| 174 |
-
print(f"Using cached answer for task {task_id}")
|
| 175 |
-
return task_id, question, answer_cache[cache_key], None
|
| 176 |
-
|
| 177 |
-
answer = await agent.answer(question)
|
| 178 |
-
|
| 179 |
-
# Cache the result
|
| 180 |
-
answer_cache[cache_key] = answer
|
| 181 |
-
|
| 182 |
-
return task_id, question, answer, None
|
| 183 |
-
except Exception as e:
|
| 184 |
-
print(f"Error processing task {task_id}: {e}")
|
| 185 |
-
return task_id, question, None, str(e)
|
| 186 |
-
|
| 187 |
-
# Create semaphore for rate limiting
|
| 188 |
-
tasks = []
|
| 189 |
-
for item in questions_batch:
|
| 190 |
-
task_id = item.get("task_id")
|
| 191 |
-
question_text = item.get("question")
|
| 192 |
-
if task_id and question_text is not None:
|
| 193 |
-
tasks.append(process_single_question(task_id, question_text))
|
| 194 |
-
|
| 195 |
-
if tasks:
|
| 196 |
-
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 197 |
-
|
| 198 |
-
return results
|
| 199 |
-
|
| 200 |
-
async def run_agent_async_improved(agent, questions_data):
|
| 201 |
-
"""Improved async processing with batching and caching"""
|
| 202 |
-
results_log, answers_payload = [], []
|
| 203 |
-
|
| 204 |
-
# Create semaphore for rate limiting
|
| 205 |
-
semaphore = asyncio.Semaphore(MAX_CONCURRENT_REQUESTS)
|
| 206 |
-
|
| 207 |
-
# Process questions in batches
|
| 208 |
-
batch_size = 10
|
| 209 |
-
batches = [questions_data[i:i + batch_size] for i in range(0, len(questions_data), batch_size)]
|
| 210 |
-
|
| 211 |
-
print(f"Processing {len(questions_data)} questions in {len(batches)} batches...")
|
| 212 |
-
|
| 213 |
-
for i, batch in enumerate(batches):
|
| 214 |
-
print(f"Processing batch {i+1}/{len(batches)} ({len(batch)} questions)...")
|
| 215 |
-
|
| 216 |
-
try:
|
| 217 |
-
batch_results = await process_questions_batch(agent, batch, semaphore)
|
| 218 |
-
|
| 219 |
-
for result in batch_results:
|
| 220 |
-
if isinstance(result, Exception):
|
| 221 |
-
print(f"Batch processing error: {result}")
|
| 222 |
-
continue
|
| 223 |
-
|
| 224 |
-
task_id, question, answer, error = result
|
| 225 |
-
|
| 226 |
-
if error:
|
| 227 |
-
print(f"Error in task {task_id}: {error}")
|
| 228 |
-
results_log.append({
|
| 229 |
-
"Task ID": task_id,
|
| 230 |
-
"Question": question[:100] + "..." if len(question) > 100 else question,
|
| 231 |
-
"Submitted Answer": f"ERROR: {error}"
|
| 232 |
-
})
|
| 233 |
-
else:
|
| 234 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
| 235 |
-
results_log.append({
|
| 236 |
-
"Task ID": task_id,
|
| 237 |
-
"Question": question[:100] + "..." if len(question) > 100 else question,
|
| 238 |
-
"Submitted Answer": answer[:200] + "..." if len(answer) > 200 else answer
|
| 239 |
-
})
|
| 240 |
-
|
| 241 |
-
# Small delay between batches to be respectful
|
| 242 |
-
if i < len(batches) - 1:
|
| 243 |
-
await asyncio.sleep(1)
|
| 244 |
-
|
| 245 |
-
except Exception as e:
|
| 246 |
-
print(f"Error processing batch {i+1}: {e}")
|
| 247 |
-
# Continue with next batch
|
| 248 |
-
continue
|
| 249 |
-
|
| 250 |
-
return results_log, answers_payload
|
| 251 |
-
|
| 252 |
-
def cache_answers(profile: gr.OAuthProfile | None):
|
| 253 |
-
"""Cache answers without submitting"""
|
| 254 |
-
if not profile:
|
| 255 |
-
return "Please log in to Hugging Face first.", None
|
| 256 |
-
|
| 257 |
-
username = profile.username
|
| 258 |
-
print(f"Caching answers for user: {username}")
|
| 259 |
-
|
| 260 |
-
# Fetch questions
|
| 261 |
-
api_url = DEFAULT_API_URL
|
| 262 |
-
questions_url = f"{api_url}/questions"
|
| 263 |
-
|
| 264 |
-
try:
|
| 265 |
-
response = requests.get(questions_url, timeout=15)
|
| 266 |
-
response.raise_for_status()
|
| 267 |
-
questions_data = response.json()
|
| 268 |
-
|
| 269 |
-
if not questions_data:
|
| 270 |
-
return "No questions found.", None
|
| 271 |
-
|
| 272 |
-
print(f"Fetched {len(questions_data)} questions for caching.")
|
| 273 |
-
|
| 274 |
-
# Initialize agent
|
| 275 |
-
try:
|
| 276 |
-
agent = ImprovedAgent()
|
| 277 |
-
except Exception as e:
|
| 278 |
-
print(f"Full error details: {e}")
|
| 279 |
-
return f"Error initializing agent: {e}", None
|
| 280 |
-
|
| 281 |
-
# Process questions
|
| 282 |
-
results_log, answers_payload = asyncio.run(run_agent_async_improved(agent, questions_data))
|
| 283 |
-
|
| 284 |
-
# Store in global cache with username
|
| 285 |
-
answer_cache[f"user_{username}"] = answers_payload
|
| 286 |
-
|
| 287 |
-
status = f"Cached {len(answers_payload)} answers for user {username}. Ready to submit!"
|
| 288 |
-
results_df = pd.DataFrame(results_log)
|
| 289 |
-
|
| 290 |
-
return status, results_df
|
| 291 |
-
|
| 292 |
-
except Exception as e:
|
| 293 |
-
print(f"Error caching answers: {e}")
|
| 294 |
-
return f"Error caching answers: {e}", None
|
| 295 |
-
|
| 296 |
-
def submit_cached_answers(profile: gr.OAuthProfile | None):
|
| 297 |
-
"""Submit previously cached answers"""
|
| 298 |
-
if not profile:
|
| 299 |
-
return "Please log in to Hugging Face first.", None
|
| 300 |
-
|
| 301 |
-
username = profile.username
|
| 302 |
-
cache_key = f"user_{username}"
|
| 303 |
-
|
| 304 |
-
if cache_key not in answer_cache:
|
| 305 |
-
return "No cached answers found. Please run 'Cache Answers' first.", None
|
| 306 |
-
|
| 307 |
-
answers_payload = answer_cache[cache_key]
|
| 308 |
-
|
| 309 |
-
if not answers_payload:
|
| 310 |
-
return "No answers to submit.", None
|
| 311 |
-
|
| 312 |
-
# Get space info
|
| 313 |
-
space_id = os.getenv("SPACE_ID")
|
| 314 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
|
| 315 |
-
|
| 316 |
-
# Submit
|
| 317 |
-
api_url = DEFAULT_API_URL
|
| 318 |
-
submit_url = f"{api_url}/submit"
|
| 319 |
-
|
| 320 |
-
submission_data = {
|
| 321 |
-
"username": username.strip(),
|
| 322 |
-
"agent_code": agent_code,
|
| 323 |
-
"answers": answers_payload
|
| 324 |
-
}
|
| 325 |
-
|
| 326 |
-
try:
|
| 327 |
-
print(f"Submitting {len(answers_payload)} cached answers...")
|
| 328 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 329 |
-
response.raise_for_status()
|
| 330 |
-
result_data = response.json()
|
| 331 |
-
|
| 332 |
-
final_status = (
|
| 333 |
-
f"Submission Successful!\n"
|
| 334 |
-
f"User: {result_data.get('username')}\n"
|
| 335 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 336 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 337 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
# Clear cache after successful submission
|
| 341 |
-
if cache_key in answer_cache:
|
| 342 |
-
del answer_cache[cache_key]
|
| 343 |
-
|
| 344 |
-
return final_status, None
|
| 345 |
-
|
| 346 |
-
except Exception as e:
|
| 347 |
-
print(f"Submission error: {e}")
|
| 348 |
-
return f"Submission failed: {e}", None
|
| 349 |
-
|
| 350 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 351 |
-
"""Original function - now improved with better error handling"""
|
| 352 |
-
if not profile:
|
| 353 |
-
return "Please log in to Hugging Face first.", None
|
| 354 |
-
|
| 355 |
-
username = profile.username
|
| 356 |
-
print(f"User logged in: {username}")
|
| 357 |
|
| 358 |
api_url = DEFAULT_API_URL
|
| 359 |
questions_url = f"{api_url}/questions"
|
| 360 |
submit_url = f"{api_url}/submit"
|
| 361 |
|
| 362 |
-
#
|
| 363 |
try:
|
| 364 |
-
agent =
|
| 365 |
except Exception as e:
|
| 366 |
-
print(f"Error
|
| 367 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
-
#
|
| 370 |
-
|
| 371 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
|
| 372 |
-
|
| 373 |
-
# Fetch questions
|
| 374 |
try:
|
| 375 |
-
print(f"Fetching questions from: {questions_url}")
|
| 376 |
response = requests.get(questions_url, timeout=15)
|
| 377 |
response.raise_for_status()
|
| 378 |
questions_data = response.json()
|
| 379 |
-
|
| 380 |
if not questions_data:
|
| 381 |
-
|
| 382 |
-
|
| 383 |
print(f"Fetched {len(questions_data)} questions.")
|
| 384 |
-
except
|
| 385 |
print(f"Error fetching questions: {e}")
|
| 386 |
return f"Error fetching questions: {e}", None
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
except Exception as e:
|
| 392 |
-
print(f"
|
| 393 |
-
return f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
|
| 395 |
if not answers_payload:
|
| 396 |
-
|
|
|
|
| 397 |
|
| 398 |
-
#
|
| 399 |
-
submission_data = {
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
"answers": answers_payload
|
| 403 |
-
}
|
| 404 |
|
|
|
|
|
|
|
| 405 |
try:
|
| 406 |
-
print(f"Submitting {len(answers_payload)} answers...")
|
| 407 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 408 |
response.raise_for_status()
|
| 409 |
result_data = response.json()
|
| 410 |
-
|
| 411 |
final_status = (
|
| 412 |
f"Submission Successful!\n"
|
| 413 |
f"User: {result_data.get('username')}\n"
|
|
@@ -415,81 +110,89 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 415 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 416 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 417 |
)
|
| 418 |
-
|
| 419 |
results_df = pd.DataFrame(results_log)
|
| 420 |
return final_status, results_df
|
| 421 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
except Exception as e:
|
| 423 |
-
|
|
|
|
| 424 |
results_df = pd.DataFrame(results_log)
|
| 425 |
-
return
|
|
|
|
| 426 |
|
| 427 |
-
# --- Build Gradio Interface ---
|
| 428 |
-
with gr.Blocks(
|
| 429 |
-
gr.Markdown("#
|
| 430 |
gr.Markdown(
|
| 431 |
"""
|
| 432 |
**Instructions:**
|
| 433 |
|
| 434 |
-
1.
|
| 435 |
-
2.
|
| 436 |
-
3.
|
| 437 |
-
|
| 438 |
-
**Improvements:**
|
| 439 |
-
- ✅ Async processing with rate limiting
|
| 440 |
-
- ✅ Answer caching for faster resubmissions
|
| 441 |
-
- ✅ Better error handling and recovery
|
| 442 |
-
- ✅ Batch processing to avoid timeouts
|
| 443 |
-
- ✅ Improved tool usage and response parsing
|
| 444 |
|
| 445 |
---
|
|
|
|
|
|
|
|
|
|
| 446 |
"""
|
| 447 |
)
|
| 448 |
|
| 449 |
gr.LoginButton()
|
| 450 |
|
| 451 |
-
|
| 452 |
-
cache_button = gr.Button("🔄 Cache Answers", variant="secondary")
|
| 453 |
-
submit_button = gr.Button("📤 Submit Cached Answers", variant="primary")
|
| 454 |
-
run_all_button = gr.Button("🚀 Run & Submit All", variant="secondary")
|
| 455 |
|
| 456 |
-
status_output = gr.Textbox(label="Status", lines=
|
|
|
|
| 457 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 458 |
|
| 459 |
-
|
| 460 |
-
cache_button.click(
|
| 461 |
-
fn=cache_answers,
|
| 462 |
-
outputs=[status_output, results_table]
|
| 463 |
-
)
|
| 464 |
-
|
| 465 |
-
submit_button.click(
|
| 466 |
-
fn=submit_cached_answers,
|
| 467 |
-
outputs=[status_output, results_table]
|
| 468 |
-
)
|
| 469 |
-
|
| 470 |
-
run_all_button.click(
|
| 471 |
fn=run_and_submit_all,
|
| 472 |
outputs=[status_output, results_table]
|
| 473 |
)
|
| 474 |
|
| 475 |
if __name__ == "__main__":
|
| 476 |
-
print("\n" + "-"*30 + "
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
if
|
| 482 |
-
print(f"✅ SPACE_HOST: {
|
| 483 |
-
print(f" Runtime URL: https://{
|
| 484 |
else:
|
| 485 |
-
print("ℹ️
|
| 486 |
|
| 487 |
-
if
|
| 488 |
-
print(f"✅ SPACE_ID: {
|
| 489 |
-
print(f" Repo URL: https://huggingface.co/spaces/{
|
|
|
|
| 490 |
else:
|
| 491 |
-
print("ℹ️ SPACE_ID not found.")
|
|
|
|
|
|
|
| 492 |
|
| 493 |
-
print("
|
| 494 |
-
|
| 495 |
-
|
|
|
|
|
|
|
| 1 |
import inspect
|
|
|
|
| 2 |
import os
|
|
|
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# (Keep Constants as is)
|
| 9 |
# --- Constants ---
|
| 10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# --- Basic Agent Definition ---
|
| 13 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 14 |
+
class BasicAgent:
|
|
|
|
| 15 |
def __init__(self):
|
| 16 |
+
print("BasicAgent initialized.")
|
| 17 |
+
def __call__(self, question: str) -> str:
|
| 18 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 19 |
+
fixed_answer = "This is a default answer."
|
| 20 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 21 |
+
return fixed_answer
|
| 22 |
+
|
| 23 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 24 |
+
"""
|
| 25 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 26 |
+
and displays the results.
|
| 27 |
+
"""
|
| 28 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 29 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 30 |
+
|
| 31 |
+
if profile:
|
| 32 |
+
username= f"{profile.username}"
|
| 33 |
+
print(f"User logged in: {username}")
|
| 34 |
+
else:
|
| 35 |
+
print("User not logged in.")
|
| 36 |
+
return "Please Login to Hugging Face with the button.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
api_url = DEFAULT_API_URL
|
| 39 |
questions_url = f"{api_url}/questions"
|
| 40 |
submit_url = f"{api_url}/submit"
|
| 41 |
|
| 42 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 43 |
try:
|
| 44 |
+
agent = BasicAgent()
|
| 45 |
except Exception as e:
|
| 46 |
+
print(f"Error instantiating agent: {e}")
|
| 47 |
return f"Error initializing agent: {e}", None
|
| 48 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 49 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 50 |
+
print(agent_code)
|
| 51 |
|
| 52 |
+
# 2. Fetch Questions
|
| 53 |
+
print(f"Fetching questions from: {questions_url}")
|
|
|
|
|
|
|
|
|
|
| 54 |
try:
|
|
|
|
| 55 |
response = requests.get(questions_url, timeout=15)
|
| 56 |
response.raise_for_status()
|
| 57 |
questions_data = response.json()
|
|
|
|
| 58 |
if not questions_data:
|
| 59 |
+
print("Fetched questions list is empty.")
|
| 60 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 61 |
print(f"Fetched {len(questions_data)} questions.")
|
| 62 |
+
except requests.exceptions.RequestException as e:
|
| 63 |
print(f"Error fetching questions: {e}")
|
| 64 |
return f"Error fetching questions: {e}", None
|
| 65 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 66 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 67 |
+
print(f"Response text: {response.text[:500]}")
|
| 68 |
+
return f"Error decoding server response for questions: {e}", None
|
| 69 |
except Exception as e:
|
| 70 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 71 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
| 72 |
+
|
| 73 |
+
# 3. Run your Agent
|
| 74 |
+
results_log = []
|
| 75 |
+
answers_payload = []
|
| 76 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 77 |
+
for item in questions_data:
|
| 78 |
+
task_id = item.get("task_id")
|
| 79 |
+
question_text = item.get("question")
|
| 80 |
+
if not task_id or question_text is None:
|
| 81 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 82 |
+
continue
|
| 83 |
+
try:
|
| 84 |
+
submitted_answer = agent(question_text)
|
| 85 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 86 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 87 |
+
except Exception as e:
|
| 88 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 89 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 90 |
|
| 91 |
if not answers_payload:
|
| 92 |
+
print("Agent did not produce any answers to submit.")
|
| 93 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 94 |
|
| 95 |
+
# 4. Prepare Submission
|
| 96 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 97 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 98 |
+
print(status_update)
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
# 5. Submit
|
| 101 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 102 |
try:
|
|
|
|
| 103 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 104 |
response.raise_for_status()
|
| 105 |
result_data = response.json()
|
|
|
|
| 106 |
final_status = (
|
| 107 |
f"Submission Successful!\n"
|
| 108 |
f"User: {result_data.get('username')}\n"
|
|
|
|
| 110 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 111 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 112 |
)
|
| 113 |
+
print("Submission successful.")
|
| 114 |
results_df = pd.DataFrame(results_log)
|
| 115 |
return final_status, results_df
|
| 116 |
+
except requests.exceptions.HTTPError as e:
|
| 117 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 118 |
+
try:
|
| 119 |
+
error_json = e.response.json()
|
| 120 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 121 |
+
except requests.exceptions.JSONDecodeError:
|
| 122 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 123 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 124 |
+
print(status_message)
|
| 125 |
+
results_df = pd.DataFrame(results_log)
|
| 126 |
+
return status_message, results_df
|
| 127 |
+
except requests.exceptions.Timeout:
|
| 128 |
+
status_message = "Submission Failed: The request timed out."
|
| 129 |
+
print(status_message)
|
| 130 |
+
results_df = pd.DataFrame(results_log)
|
| 131 |
+
return status_message, results_df
|
| 132 |
+
except requests.exceptions.RequestException as e:
|
| 133 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 134 |
+
print(status_message)
|
| 135 |
+
results_df = pd.DataFrame(results_log)
|
| 136 |
+
return status_message, results_df
|
| 137 |
except Exception as e:
|
| 138 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 139 |
+
print(status_message)
|
| 140 |
results_df = pd.DataFrame(results_log)
|
| 141 |
+
return status_message, results_df
|
| 142 |
+
|
| 143 |
|
| 144 |
+
# --- Build Gradio Interface using Blocks ---
|
| 145 |
+
with gr.Blocks() as demo:
|
| 146 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 147 |
gr.Markdown(
|
| 148 |
"""
|
| 149 |
**Instructions:**
|
| 150 |
|
| 151 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 152 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 153 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
---
|
| 156 |
+
**Disclaimers:**
|
| 157 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 158 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 159 |
"""
|
| 160 |
)
|
| 161 |
|
| 162 |
gr.LoginButton()
|
| 163 |
|
| 164 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 167 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 168 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 169 |
|
| 170 |
+
run_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
fn=run_and_submit_all,
|
| 172 |
outputs=[status_output, results_table]
|
| 173 |
)
|
| 174 |
|
| 175 |
if __name__ == "__main__":
|
| 176 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 177 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 178 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 179 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 180 |
+
|
| 181 |
+
if space_host_startup:
|
| 182 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 183 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 184 |
else:
|
| 185 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 186 |
|
| 187 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 188 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 189 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 190 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 191 |
else:
|
| 192 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 193 |
+
|
| 194 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 195 |
|
| 196 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 197 |
+
demo.launch(debug=True, share=False)
|
| 198 |
+
|