Spaces:
Sleeping
Sleeping
EtienneB
commited on
Commit
·
e43f584
1
Parent(s):
61cae63
updates
Browse files- __pycache__/tools.cpython-313.pyc +0 -0
- agent.py +4 -3
- app.py +30 -8
- requirements.txt +19 -3
- tools.py +81 -1
__pycache__/tools.cpython-313.pyc
CHANGED
Binary files a/__pycache__/tools.cpython-313.pyc and b/__pycache__/tools.cpython-313.pyc differ
|
|
agent.py
CHANGED
@@ -14,8 +14,9 @@ from tools import (absolute, add, analyze_csv_file, analyze_excel_file,
|
|
14 |
factorial, floor_divide, get_current_time_in_timezone,
|
15 |
greatest_common_divisor, is_prime, least_common_multiple,
|
16 |
logarithm, modulus, multiply, percentage_calculator, power,
|
17 |
-
python_code_parser,
|
18 |
-
|
|
|
19 |
|
20 |
# Load Constants
|
21 |
load_dotenv()
|
@@ -31,7 +32,7 @@ tools = [
|
|
31 |
is_prime, least_common_multiple, percentage_calculator,
|
32 |
wiki_search, analyze_excel_file, arvix_search,
|
33 |
audio_transcription, python_code_parser, analyze_csv_file,
|
34 |
-
extract_text
|
35 |
]
|
36 |
|
37 |
# Load system prompt
|
|
|
14 |
factorial, floor_divide, get_current_time_in_timezone,
|
15 |
greatest_common_divisor, is_prime, least_common_multiple,
|
16 |
logarithm, modulus, multiply, percentage_calculator, power,
|
17 |
+
python_code_parser, reverse_sentence,
|
18 |
+
roman_calculator_converter, square_root, subtract,
|
19 |
+
web_search, wiki_search)
|
20 |
|
21 |
# Load Constants
|
22 |
load_dotenv()
|
|
|
32 |
is_prime, least_common_multiple, percentage_calculator,
|
33 |
wiki_search, analyze_excel_file, arvix_search,
|
34 |
audio_transcription, python_code_parser, analyze_csv_file,
|
35 |
+
extract_text, reverse_sentence
|
36 |
]
|
37 |
|
38 |
# Load system prompt
|
app.py
CHANGED
@@ -16,24 +16,46 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
16 |
# --- Basic Agent Definition ---
|
17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
class BasicAgent:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def __init__(self):
|
|
|
20 |
print("BasicAgent initialized.")
|
|
|
|
|
21 |
self.graph = build_graph()
|
22 |
|
23 |
def __call__(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
25 |
# Wrap the question in a HumanMessage from langchain_core
|
26 |
messages = [HumanMessage(content=question)]
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
print(f"Agent full response: {answer}")
|
|
|
30 |
|
31 |
-
# Optionally trim the "Final Answer: " prefix only if it exists
|
32 |
-
if answer.startswith("Final Answer:"):
|
33 |
-
return answer[len("Final Answer:"):].strip()
|
34 |
-
else:
|
35 |
-
return answer.strip()
|
36 |
-
|
37 |
|
38 |
|
39 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
16 |
# --- Basic Agent Definition ---
|
17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
class BasicAgent:
|
19 |
+
"""A basic agent that uses a pre-built graph to answer questions.
|
20 |
+
|
21 |
+
This agent is initialized with a graph structure that defines its
|
22 |
+
reasoning and processing flow. When called, it takes a user's question,
|
23 |
+
invokes the graph with it, and returns the final response.
|
24 |
+
|
25 |
+
Attributes:
|
26 |
+
graph: The compiled graph from `build_graph()` that processes messages.
|
27 |
+
"""
|
28 |
def __init__(self):
|
29 |
+
"""Initializes the BasicAgent by building its processing graph."""
|
30 |
print("BasicAgent initialized.")
|
31 |
+
# This function should be defined elsewhere in the code.
|
32 |
+
# It is expected to return a compiled LangChain graph.
|
33 |
self.graph = build_graph()
|
34 |
|
35 |
def __call__(self, question: str) -> str:
|
36 |
+
"""Processes a question using the agent's graph and returns the answer.
|
37 |
+
|
38 |
+
This method makes the agent instance callable. It wraps the user's
|
39 |
+
question in a HumanMessage, sends it through the processing graph,
|
40 |
+
and extracts the content from the final message in the response.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
question: The question to be processed by the agent.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
The answer generated by the agent's graph as a string.
|
47 |
+
"""
|
48 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
49 |
# Wrap the question in a HumanMessage from langchain_core
|
50 |
messages = [HumanMessage(content=question)]
|
51 |
+
# The graph.invoke method takes a dictionary with the key "messages"
|
52 |
+
# and returns a dictionary with the processed messages.
|
53 |
+
response_messages = self.graph.invoke({"messages": messages})
|
54 |
+
# The answer is expected to be in the 'content' of the last message.
|
55 |
+
answer = response_messages['messages'][-1].content
|
56 |
print(f"Agent full response: {answer}")
|
57 |
+
return answer
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
requirements.txt
CHANGED
@@ -35,6 +35,22 @@ assemblyai # For AssemblyAIAudioTranscriptLoader
|
|
35 |
|
36 |
# Additional utilities
|
37 |
typing-extensions
|
38 |
-
asyncio-throttle
|
39 |
-
tenacity
|
40 |
-
loguru
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Additional utilities
|
37 |
typing-extensions
|
38 |
+
# asyncio-throttle
|
39 |
+
#tenacity
|
40 |
+
# loguru
|
41 |
+
|
42 |
+
torch
|
43 |
+
torchvision
|
44 |
+
opencv-python
|
45 |
+
pytube
|
46 |
+
|
47 |
+
# YOLOv5 and dependencies
|
48 |
+
numpy
|
49 |
+
matplotlib
|
50 |
+
scipy
|
51 |
+
seaborn
|
52 |
+
tqdm
|
53 |
+
pyyaml
|
54 |
+
pillow
|
55 |
+
|
56 |
+
git+https://github.com/ultralytics/yolov5.git
|
tools.py
CHANGED
@@ -2,10 +2,13 @@ import base64
|
|
2 |
import datetime
|
3 |
import math
|
4 |
import os
|
5 |
-
|
|
|
6 |
|
|
|
7 |
import pandas
|
8 |
import pytz
|
|
|
9 |
from langchain.schema import HumanMessage
|
10 |
from langchain_community.document_loaders import (
|
11 |
ArxivLoader, AssemblyAIAudioTranscriptLoader, WikipediaLoader)
|
@@ -14,6 +17,7 @@ from langchain_community.document_loaders.parsers import LanguageParser
|
|
14 |
from langchain_community.tools import DuckDuckGoSearchRun
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
17 |
|
18 |
|
19 |
@tool
|
@@ -748,3 +752,79 @@ def extract_text(img_path: str) -> str:
|
|
748 |
error_msg = f"Error extracting text: {str(e)}"
|
749 |
print(error_msg)
|
750 |
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import datetime
|
3 |
import math
|
4 |
import os
|
5 |
+
import tempfile
|
6 |
+
from typing import Dict, Union
|
7 |
|
8 |
+
import cv2
|
9 |
import pandas
|
10 |
import pytz
|
11 |
+
import torch
|
12 |
from langchain.schema import HumanMessage
|
13 |
from langchain_community.document_loaders import (
|
14 |
ArxivLoader, AssemblyAIAudioTranscriptLoader, WikipediaLoader)
|
|
|
17 |
from langchain_community.tools import DuckDuckGoSearchRun
|
18 |
from langchain_core.tools import tool
|
19 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
20 |
+
from pytube import YouTube
|
21 |
|
22 |
|
23 |
@tool
|
|
|
752 |
error_msg = f"Error extracting text: {str(e)}"
|
753 |
print(error_msg)
|
754 |
return ""
|
755 |
+
|
756 |
+
|
757 |
+
@tool
|
758 |
+
def reverse_sentence(text: str) -> str:
|
759 |
+
"""
|
760 |
+
Reverses the input text.
|
761 |
+
Args:
|
762 |
+
text (str): The input string to be reversed.
|
763 |
+
Returns:
|
764 |
+
str: The reversed string.
|
765 |
+
"""
|
766 |
+
return text[::-1]
|
767 |
+
|
768 |
+
|
769 |
+
def get_max_bird_species_count_from_video(url: str) -> Dict:
|
770 |
+
"""
|
771 |
+
Downloads a YouTube video and returns the maximum number of unique bird species
|
772 |
+
visible in any frame, along with the timestamp.
|
773 |
+
|
774 |
+
Parameters:
|
775 |
+
url (str): YouTube video URL
|
776 |
+
|
777 |
+
Returns:
|
778 |
+
dict: {
|
779 |
+
"max_species_count": int,
|
780 |
+
"timestamp": str,
|
781 |
+
"species_list": List[str],
|
782 |
+
}
|
783 |
+
"""
|
784 |
+
# 1. Download YouTube video
|
785 |
+
yt = YouTube(url)
|
786 |
+
stream = yt.streams.filter(file_extension='mp4').get_highest_resolution()
|
787 |
+
temp_video_path = os.path.join(tempfile.gettempdir(), "video.mp4")
|
788 |
+
stream.download(filename=temp_video_path)
|
789 |
+
|
790 |
+
# 2. Load object detection model for bird species
|
791 |
+
# Load a fine-tuned YOLOv5 model or similar pretrained on bird species
|
792 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best_birds.pt') # path to your trained model
|
793 |
+
|
794 |
+
# 3. Process video frames
|
795 |
+
cap = cv2.VideoCapture(temp_video_path)
|
796 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
797 |
+
frame_interval = int(fps * 1) # 1 frame per second
|
798 |
+
|
799 |
+
max_species_count = 0
|
800 |
+
max_species_frame_time = 0
|
801 |
+
species_at_max = []
|
802 |
+
|
803 |
+
frame_idx = 0
|
804 |
+
while cap.isOpened():
|
805 |
+
ret, frame = cap.read()
|
806 |
+
if not ret:
|
807 |
+
break
|
808 |
+
if frame_idx % frame_interval == 0:
|
809 |
+
# Run detection
|
810 |
+
results = model(frame)
|
811 |
+
detected_species = set()
|
812 |
+
for *box, conf, cls in results.xyxy[0]:
|
813 |
+
species_name = model.names[int(cls)]
|
814 |
+
detected_species.add(species_name)
|
815 |
+
|
816 |
+
if len(detected_species) > max_species_count:
|
817 |
+
max_species_count = len(detected_species)
|
818 |
+
max_species_frame_time = int(cap.get(cv2.CAP_PROP_POS_MSEC)) // 1000
|
819 |
+
species_at_max = list(detected_species)
|
820 |
+
|
821 |
+
frame_idx += 1
|
822 |
+
|
823 |
+
cap.release()
|
824 |
+
os.remove(temp_video_path)
|
825 |
+
|
826 |
+
return {
|
827 |
+
"max_species_count": max_species_count,
|
828 |
+
"timestamp": f"{max_species_frame_time}s",
|
829 |
+
"species_list": species_at_max
|
830 |
+
}
|