Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,10 @@ import plotly.express as px
|
|
5 |
from datasets import load_dataset
|
6 |
import folium
|
7 |
from streamlit_folium import st_folium
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Hugging Face Datasets
|
10 |
@st.cache_data
|
@@ -61,12 +65,30 @@ def generate_terrain_data():
|
|
61 |
|
62 |
terrain_data = generate_terrain_data()
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
# Add Composite Score for Ranking
|
72 |
filtered_data["Composite Score"] = (
|
@@ -81,9 +103,13 @@ if data_to_view == "Network Insights":
|
|
81 |
st.dataframe(network_insights)
|
82 |
elif data_to_view == "Filtered Terrain Data":
|
83 |
st.subheader("Filtered Terrain Data")
|
84 |
-
|
|
|
|
|
|
|
85 |
"Region", "Priority Area", "Signal Strength (dBm)", "Cost ($1000s)", "Terrain Difficulty (0-10)", "Description", "Composite Score"
|
86 |
-
]
|
|
|
87 |
|
88 |
# Map Visualization
|
89 |
st.header("Geographical Map of Regions")
|
@@ -96,6 +122,7 @@ if not filtered_data.empty:
|
|
96 |
location=[row["Latitude"], row["Longitude"]],
|
97 |
popup=(
|
98 |
f"<b>Region:</b> {row['Region']}<br>"
|
|
|
99 |
f"<b>Description:</b> {row['Description']}<br>"
|
100 |
f"<b>Signal Strength:</b> {row['Signal Strength (dBm)']} dBm<br>"
|
101 |
f"<b>Cost:</b> ${row['Cost ($1000s)']}k<br>"
|
@@ -130,7 +157,7 @@ def recommend_deployment(data):
|
|
130 |
if data.empty:
|
131 |
return "No viable deployment regions within the specified parameters."
|
132 |
best_region = data.loc[data["Composite Score"].idxmax()]
|
133 |
-
return f"Recommended Region: {best_region['Region']} with Composite Score: {best_region['Composite Score']:.2f}, Signal Strength: {best_region['Signal Strength (dBm)']} dBm, Terrain Difficulty: {best_region['Terrain Difficulty (0-10)']}, and Estimated Cost: ${best_region['Cost ($1000s)']}k\nDescription: {best_region['Description']}"
|
134 |
|
135 |
recommendation = recommend_deployment(filtered_data)
|
136 |
st.subheader(recommendation)
|
|
|
5 |
from datasets import load_dataset
|
6 |
import folium
|
7 |
from streamlit_folium import st_folium
|
8 |
+
from geopy.geocoders import Nominatim
|
9 |
+
|
10 |
+
# Initialize geolocator
|
11 |
+
geolocator = Nominatim(user_agent="geoapiExercises")
|
12 |
|
13 |
# Hugging Face Datasets
|
14 |
@st.cache_data
|
|
|
65 |
|
66 |
terrain_data = generate_terrain_data()
|
67 |
|
68 |
+
# Reverse Geocoding Function
|
69 |
+
def get_location_name(lat, lon):
|
70 |
+
try:
|
71 |
+
location = geolocator.reverse((lat, lon), exactly_one=True)
|
72 |
+
return location.address if location else "Unknown Location"
|
73 |
+
except Exception as e:
|
74 |
+
return "Error: Unable to fetch location"
|
75 |
+
|
76 |
+
# Add Location Name to Filtered Data
|
77 |
+
if include_human_readable:
|
78 |
+
filtered_data = terrain_data[
|
79 |
+
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) &
|
80 |
+
(terrain_data["Cost ($1000s)"] <= budget) &
|
81 |
+
(terrain_data["Priority Area"] == priority_area)
|
82 |
+
]
|
83 |
+
filtered_data["Location Name"] = filtered_data.apply(
|
84 |
+
lambda row: get_location_name(row["Latitude"], row["Longitude"]), axis=1
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
filtered_data = terrain_data[
|
88 |
+
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) &
|
89 |
+
(terrain_data["Cost ($1000s)"] <= budget) &
|
90 |
+
(terrain_data["Priority Area"] == priority_area)
|
91 |
+
]
|
92 |
|
93 |
# Add Composite Score for Ranking
|
94 |
filtered_data["Composite Score"] = (
|
|
|
103 |
st.dataframe(network_insights)
|
104 |
elif data_to_view == "Filtered Terrain Data":
|
105 |
st.subheader("Filtered Terrain Data")
|
106 |
+
columns_to_display = [
|
107 |
+
"Region", "Location Name", "Priority Area", "Signal Strength (dBm)",
|
108 |
+
"Cost ($1000s)", "Terrain Difficulty (0-10)", "Description", "Composite Score"
|
109 |
+
] if include_human_readable else [
|
110 |
"Region", "Priority Area", "Signal Strength (dBm)", "Cost ($1000s)", "Terrain Difficulty (0-10)", "Description", "Composite Score"
|
111 |
+
]
|
112 |
+
st.dataframe(filtered_data[columns_to_display])
|
113 |
|
114 |
# Map Visualization
|
115 |
st.header("Geographical Map of Regions")
|
|
|
122 |
location=[row["Latitude"], row["Longitude"]],
|
123 |
popup=(
|
124 |
f"<b>Region:</b> {row['Region']}<br>"
|
125 |
+
f"<b>Location:</b> {row.get('Location Name', 'N/A')}<br>"
|
126 |
f"<b>Description:</b> {row['Description']}<br>"
|
127 |
f"<b>Signal Strength:</b> {row['Signal Strength (dBm)']} dBm<br>"
|
128 |
f"<b>Cost:</b> ${row['Cost ($1000s)']}k<br>"
|
|
|
157 |
if data.empty:
|
158 |
return "No viable deployment regions within the specified parameters."
|
159 |
best_region = data.loc[data["Composite Score"].idxmax()]
|
160 |
+
return f"Recommended Region: {best_region['Region']} with Composite Score: {best_region['Composite Score']:.2f}, Signal Strength: {best_region['Signal Strength (dBm)']} dBm, Terrain Difficulty: {best_region['Terrain Difficulty (0-10)']}, and Estimated Cost: ${best_region['Cost ($1000s)']}k\nDescription: {best_region['Description']}\nLocation Name: {best_region.get('Location Name', 'N/A')}"
|
161 |
|
162 |
recommendation = recommend_deployment(filtered_data)
|
163 |
st.subheader(recommendation)
|