Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import os
|
2 |
-
import tempfile
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
-
# Azure AI Agents SDK
|
6 |
from azure.core.credentials import AzureKeyCredential
|
7 |
from azure.ai.agents import AgentsClient
|
8 |
from azure.ai.agents.models import (
|
@@ -13,71 +13,70 @@ from azure.ai.agents.models import (
|
|
13 |
)
|
14 |
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
"""
|
18 |
-
Initialize an Azure AI Agent with optional data file for the Code Interpreter.
|
19 |
-
Returns a session dict
|
20 |
"""
|
21 |
if not endpoint or not api_key or not model_deployment:
|
22 |
raise ValueError("Please provide endpoint, key, and model deployment name.")
|
23 |
|
24 |
-
# Create client (API key auth)
|
25 |
client = AgentsClient(
|
26 |
endpoint=endpoint.strip(),
|
27 |
credential=AzureKeyCredential(api_key.strip()),
|
28 |
)
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
if
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
temp_path = tmp.name
|
37 |
-
|
38 |
-
with client:
|
39 |
-
code_interpreter = None
|
40 |
-
|
41 |
-
if temp_path:
|
42 |
-
# Upload file for agent use
|
43 |
-
up = client.files.upload_and_poll(file_path=temp_path, purpose=FilePurpose.AGENTS)
|
44 |
-
# Create the tool bound to this file
|
45 |
-
code_interpreter = CodeInterpreterTool(file_ids=[up.id])
|
46 |
-
|
47 |
-
# Define the agent (attach tools if we created one)
|
48 |
-
agent = client.create_agent(
|
49 |
-
model=model_deployment,
|
50 |
-
name="data-agent",
|
51 |
-
instructions=(
|
52 |
-
"You are an AI agent that analyzes the uploaded data when present. "
|
53 |
-
"Use Python via the Code Interpreter to compute statistical metrics or produce "
|
54 |
-
"text-based charts when asked. If no file is provided, proceed with normal reasoning."
|
55 |
-
),
|
56 |
-
tools=(code_interpreter.definitions if code_interpreter else None),
|
57 |
-
tool_resources=(code_interpreter.resources if code_interpreter else None),
|
58 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
"endpoint": endpoint.strip(),
|
66 |
"api_key": api_key.strip(),
|
67 |
"model": model_deployment.strip(),
|
68 |
"client": client,
|
69 |
"agent_id": agent.id,
|
70 |
"thread_id": thread.id,
|
71 |
-
"has_file":
|
72 |
-
"
|
73 |
}
|
74 |
-
return session
|
75 |
|
76 |
|
77 |
-
def
|
78 |
"""
|
79 |
-
Send a
|
80 |
-
|
|
|
81 |
"""
|
82 |
if not session or "client" not in session:
|
83 |
raise ValueError("Agent is not initialized. Click 'Connect & Prepare' first.")
|
@@ -86,28 +85,27 @@ def send_message(user_msg: str, session: dict):
|
|
86 |
agent_id = session["agent_id"]
|
87 |
thread_id = session["thread_id"]
|
88 |
|
89 |
-
#
|
90 |
client.messages.create(
|
91 |
thread_id=thread_id,
|
92 |
role="user",
|
93 |
content=user_msg,
|
94 |
)
|
95 |
|
96 |
-
# Run
|
97 |
run = client.runs.create_and_process(thread_id=thread_id, agent_id=agent_id)
|
98 |
-
|
99 |
if getattr(run, "status", None) == "failed":
|
100 |
last_error = getattr(run, "last_error", "Unknown error")
|
101 |
return f"Run failed: {last_error}", ""
|
102 |
|
103 |
-
# Get
|
104 |
last_msg = client.messages.get_last_message_text_by_role(
|
105 |
thread_id=thread_id,
|
106 |
role=MessageRole.AGENT,
|
107 |
)
|
108 |
agent_reply = last_msg.text.value if last_msg else "(No reply text found.)"
|
109 |
|
110 |
-
# Build
|
111 |
history_lines = []
|
112 |
messages = client.messages.list(thread_id=thread_id, order=ListSortOrder.ASCENDING)
|
113 |
for m in messages:
|
@@ -119,46 +117,34 @@ def send_message(user_msg: str, session: dict):
|
|
119 |
return agent_reply, history_str
|
120 |
|
121 |
|
122 |
-
def teardown(session: dict):
|
123 |
"""
|
124 |
-
Delete the agent
|
125 |
-
Note: Threads are retained by service; you can delete agents to clean up.
|
126 |
"""
|
127 |
if not session:
|
128 |
return "Nothing to clean up."
|
129 |
|
130 |
-
|
131 |
try:
|
132 |
client: AgentsClient = session.get("client")
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
client.delete_agent(agent_id)
|
138 |
-
msg.append("Deleted agent.")
|
139 |
except Exception as e:
|
140 |
-
|
141 |
|
142 |
-
|
143 |
-
try:
|
144 |
-
temp_path = session.get("temp_path")
|
145 |
-
if temp_path and os.path.exists(temp_path):
|
146 |
-
os.remove(temp_path)
|
147 |
-
msg.append("Removed temp file.")
|
148 |
-
except Exception as e:
|
149 |
-
msg.append(f"Temp cleanup warning: {e}")
|
150 |
-
|
151 |
-
return " ".join(msg) if msg else "Cleanup complete."
|
152 |
|
153 |
|
154 |
-
# ----------------- Gradio
|
155 |
|
156 |
with gr.Blocks(title="Azure AI Agent (Endpoint+Key) — Gradio") as demo:
|
157 |
gr.Markdown(
|
158 |
"## Azure AI Agent (Code Interpreter Ready)\n"
|
159 |
-
"Enter your **Project Endpoint** and **Key**,
|
160 |
-
"optionally upload a data file (CSV
|
161 |
-
"Click **Connect & Prepare** once, then send prompts
|
162 |
)
|
163 |
|
164 |
with gr.Row():
|
@@ -167,15 +153,25 @@ with gr.Blocks(title="Azure AI Agent (Endpoint+Key) — Gradio") as demo:
|
|
167 |
|
168 |
with gr.Row():
|
169 |
model = gr.Textbox(label="Model Deployment Name", value="gpt-4o")
|
170 |
-
data_file = gr.File(
|
|
|
|
|
|
|
|
|
171 |
|
172 |
session_state = gr.State(value=None)
|
173 |
|
174 |
connect_btn = gr.Button("🔌 Connect & Prepare Agent", variant="primary")
|
175 |
connect_status = gr.Markdown("")
|
176 |
|
|
|
177 |
with gr.Row():
|
178 |
-
chatbot = gr.Chatbot(
|
|
|
|
|
|
|
|
|
|
|
179 |
user_input = gr.Textbox(label="Your message", placeholder="Ask a question or request a chart…")
|
180 |
with gr.Row():
|
181 |
send_btn = gr.Button("Send ▶")
|
@@ -183,10 +179,11 @@ with gr.Blocks(title="Azure AI Agent (Endpoint+Key) — Gradio") as demo:
|
|
183 |
|
184 |
history = gr.Textbox(label="Conversation Log (chronological)", lines=12)
|
185 |
|
186 |
-
# Callbacks
|
187 |
-
|
|
|
188 |
try:
|
189 |
-
sess = init_agent(ep, key, mdl,
|
190 |
return sess, "✅ Connected. Agent and thread are ready."
|
191 |
except Exception as e:
|
192 |
return None, f"❌ Connection error: {e}"
|
@@ -197,20 +194,32 @@ with gr.Blocks(title="Azure AI Agent (Endpoint+Key) — Gradio") as demo:
|
|
197 |
outputs=[session_state, connect_status],
|
198 |
)
|
199 |
|
200 |
-
def on_send(msg, session,
|
|
|
|
|
|
|
|
|
201 |
if not msg:
|
202 |
-
return gr.update(),
|
|
|
203 |
try:
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
except Exception as e:
|
208 |
-
|
|
|
209 |
|
210 |
send_btn.click(
|
211 |
fn=on_send,
|
212 |
inputs=[user_input, session_state, chatbot],
|
213 |
-
outputs=[chatbot,
|
214 |
)
|
215 |
|
216 |
def on_cleanup(session):
|
@@ -227,4 +236,5 @@ with gr.Blocks(title="Azure AI Agent (Endpoint+Key) — Gradio") as demo:
|
|
227 |
)
|
228 |
|
229 |
if __name__ == "__main__":
|
|
|
230 |
demo.launch()
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
+
from typing import List, Dict, Tuple, Optional
|
4 |
|
5 |
+
# Azure AI Agents SDK (API key auth)
|
6 |
from azure.core.credentials import AzureKeyCredential
|
7 |
from azure.ai.agents import AgentsClient
|
8 |
from azure.ai.agents.models import (
|
|
|
13 |
)
|
14 |
|
15 |
|
16 |
+
# ----------------- Core Agent Helpers -----------------
|
17 |
+
|
18 |
+
def init_agent(
|
19 |
+
endpoint: str,
|
20 |
+
api_key: str,
|
21 |
+
model_deployment: str,
|
22 |
+
data_file_path: Optional[str],
|
23 |
+
) -> dict:
|
24 |
"""
|
25 |
+
Initialize an Azure AI Agent with an optional data file for the Code Interpreter.
|
26 |
+
Returns a session dict containing client, agent_id, thread_id, etc.
|
27 |
"""
|
28 |
if not endpoint or not api_key or not model_deployment:
|
29 |
raise ValueError("Please provide endpoint, key, and model deployment name.")
|
30 |
|
|
|
31 |
client = AgentsClient(
|
32 |
endpoint=endpoint.strip(),
|
33 |
credential=AzureKeyCredential(api_key.strip()),
|
34 |
)
|
35 |
|
36 |
+
# Optionally upload file and bind it to a Code Interpreter tool
|
37 |
+
code_interpreter = None
|
38 |
+
if data_file_path:
|
39 |
+
uploaded = client.files.upload_and_poll(
|
40 |
+
file_path=data_file_path,
|
41 |
+
purpose=FilePurpose.AGENTS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
+
code_interpreter = CodeInterpreterTool(file_ids=[uploaded.id])
|
44 |
+
|
45 |
+
# Create the agent (attach tools only if present)
|
46 |
+
agent = client.create_agent(
|
47 |
+
model=model_deployment.strip(),
|
48 |
+
name="data-agent",
|
49 |
+
instructions=(
|
50 |
+
"You are an AI agent that analyzes the uploaded data when present. "
|
51 |
+
"Use Python via the Code Interpreter to compute statistical metrics "
|
52 |
+
"or produce text-based charts when asked. If no file is provided, "
|
53 |
+
"proceed with normal reasoning."
|
54 |
+
),
|
55 |
+
tools=(code_interpreter.definitions if code_interpreter else None),
|
56 |
+
tool_resources=(code_interpreter.resources if code_interpreter else None),
|
57 |
+
)
|
58 |
|
59 |
+
# Create a thread for the conversation
|
60 |
+
thread = client.threads.create()
|
61 |
|
62 |
+
# Session we keep in Gradio state
|
63 |
+
return {
|
64 |
"endpoint": endpoint.strip(),
|
65 |
"api_key": api_key.strip(),
|
66 |
"model": model_deployment.strip(),
|
67 |
"client": client,
|
68 |
"agent_id": agent.id,
|
69 |
"thread_id": thread.id,
|
70 |
+
"has_file": bool(data_file_path),
|
71 |
+
"uploaded_path": data_file_path,
|
72 |
}
|
|
|
73 |
|
74 |
|
75 |
+
def send_to_agent(user_msg: str, session: dict) -> Tuple[str, str]:
|
76 |
"""
|
77 |
+
Send a message to the existing agent thread and return:
|
78 |
+
- agent_reply (str)
|
79 |
+
- history_str (str) readable, chronological log
|
80 |
"""
|
81 |
if not session or "client" not in session:
|
82 |
raise ValueError("Agent is not initialized. Click 'Connect & Prepare' first.")
|
|
|
85 |
agent_id = session["agent_id"]
|
86 |
thread_id = session["thread_id"]
|
87 |
|
88 |
+
# Add user message
|
89 |
client.messages.create(
|
90 |
thread_id=thread_id,
|
91 |
role="user",
|
92 |
content=user_msg,
|
93 |
)
|
94 |
|
95 |
+
# Run and wait for completion
|
96 |
run = client.runs.create_and_process(thread_id=thread_id, agent_id=agent_id)
|
|
|
97 |
if getattr(run, "status", None) == "failed":
|
98 |
last_error = getattr(run, "last_error", "Unknown error")
|
99 |
return f"Run failed: {last_error}", ""
|
100 |
|
101 |
+
# Get last agent message text
|
102 |
last_msg = client.messages.get_last_message_text_by_role(
|
103 |
thread_id=thread_id,
|
104 |
role=MessageRole.AGENT,
|
105 |
)
|
106 |
agent_reply = last_msg.text.value if last_msg else "(No reply text found.)"
|
107 |
|
108 |
+
# Build readable history (chronological)
|
109 |
history_lines = []
|
110 |
messages = client.messages.list(thread_id=thread_id, order=ListSortOrder.ASCENDING)
|
111 |
for m in messages:
|
|
|
117 |
return agent_reply, history_str
|
118 |
|
119 |
|
120 |
+
def teardown(session: dict) -> str:
|
121 |
"""
|
122 |
+
Delete the agent to reduce costs. (Threads are retained by service.)
|
|
|
123 |
"""
|
124 |
if not session:
|
125 |
return "Nothing to clean up."
|
126 |
|
127 |
+
messages = []
|
128 |
try:
|
129 |
client: AgentsClient = session.get("client")
|
130 |
+
agent_id = session.get("agent_id")
|
131 |
+
if client and agent_id:
|
132 |
+
client.delete_agent(agent_id)
|
133 |
+
messages.append("Deleted agent.")
|
|
|
|
|
134 |
except Exception as e:
|
135 |
+
messages.append(f"Cleanup warning: {e}")
|
136 |
|
137 |
+
return " ".join(messages) if messages else "Cleanup complete."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
|
140 |
+
# ----------------- Gradio App -----------------
|
141 |
|
142 |
with gr.Blocks(title="Azure AI Agent (Endpoint+Key) — Gradio") as demo:
|
143 |
gr.Markdown(
|
144 |
"## Azure AI Agent (Code Interpreter Ready)\n"
|
145 |
+
"Enter your **Project Endpoint** and **Key**, set your **Model Deployment** (e.g., `gpt-4o`), "
|
146 |
+
"optionally upload a data file (TXT/CSV), then chat.\n"
|
147 |
+
"Click **Connect & Prepare Agent** once, then send prompts."
|
148 |
)
|
149 |
|
150 |
with gr.Row():
|
|
|
153 |
|
154 |
with gr.Row():
|
155 |
model = gr.Textbox(label="Model Deployment Name", value="gpt-4o")
|
156 |
+
data_file = gr.File(
|
157 |
+
label="Optional data file (txt/csv) for Code Interpreter",
|
158 |
+
file_types=[".txt", ".csv"],
|
159 |
+
type="filepath" # returns a filesystem path string
|
160 |
+
)
|
161 |
|
162 |
session_state = gr.State(value=None)
|
163 |
|
164 |
connect_btn = gr.Button("🔌 Connect & Prepare Agent", variant="primary")
|
165 |
connect_status = gr.Markdown("")
|
166 |
|
167 |
+
# Use messages-format chatbot
|
168 |
with gr.Row():
|
169 |
+
chatbot = gr.Chatbot(
|
170 |
+
label="Conversation",
|
171 |
+
height=420,
|
172 |
+
type="messages", # openai-style dicts: {"role": "...", "content": "..."}
|
173 |
+
)
|
174 |
+
|
175 |
user_input = gr.Textbox(label="Your message", placeholder="Ask a question or request a chart…")
|
176 |
with gr.Row():
|
177 |
send_btn = gr.Button("Send ▶")
|
|
|
179 |
|
180 |
history = gr.Textbox(label="Conversation Log (chronological)", lines=12)
|
181 |
|
182 |
+
# --------- Callbacks ---------
|
183 |
+
|
184 |
+
def on_connect(ep, key, mdl, fpath):
|
185 |
try:
|
186 |
+
sess = init_agent(ep, key, mdl, fpath)
|
187 |
return sess, "✅ Connected. Agent and thread are ready."
|
188 |
except Exception as e:
|
189 |
return None, f"❌ Connection error: {e}"
|
|
|
194 |
outputs=[session_state, connect_status],
|
195 |
)
|
196 |
|
197 |
+
def on_send(msg: str, session: dict, chat_msgs: List[Dict[str, str]]):
|
198 |
+
"""
|
199 |
+
chat_msgs is a list of dicts with 'role' and 'content' (messages format).
|
200 |
+
We append the user's message and the assistant's reply in that same format.
|
201 |
+
"""
|
202 |
if not msg:
|
203 |
+
return gr.update(), gr.update(), gr.update(value="Please enter a message.")
|
204 |
+
|
205 |
try:
|
206 |
+
agent_reply, log = send_to_agent(msg, session)
|
207 |
+
|
208 |
+
# Build updated chat message list
|
209 |
+
chat_msgs = (chat_msgs or []) + [
|
210 |
+
{"role": "user", "content": msg},
|
211 |
+
{"role": "assistant", "content": agent_reply},
|
212 |
+
]
|
213 |
+
|
214 |
+
return chat_msgs, "", gr.update(value=log) # clear user input after send
|
215 |
except Exception as e:
|
216 |
+
# Keep chat as-is, show error in history box
|
217 |
+
return chat_msgs, msg, gr.update(value=f"❌ Error: {e}")
|
218 |
|
219 |
send_btn.click(
|
220 |
fn=on_send,
|
221 |
inputs=[user_input, session_state, chatbot],
|
222 |
+
outputs=[chatbot, user_input, history],
|
223 |
)
|
224 |
|
225 |
def on_cleanup(session):
|
|
|
236 |
)
|
237 |
|
238 |
if __name__ == "__main__":
|
239 |
+
# If deploying to spaces/containers you can set server_name/port via env if needed
|
240 |
demo.launch()
|