TensorFlowClass / pages /21_GraphRag.py
eaglelandsonce's picture
Update pages/21_GraphRag.py
c178699 verified
raw
history blame
3.35 kB
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModel
import torch
import graphrag
import inspect
# Diagnostic Section
st.title("Graphrag Module Investigation")
st.write("Contents of graphrag module:")
module_contents = dir(graphrag)
st.write(module_contents)
st.write("Detailed information about graphrag module contents:")
for item in module_contents:
attr = getattr(graphrag, item)
st.write(f"Name: {item}")
st.write(f"Type: {type(attr)}")
if inspect.isclass(attr):
st.write("Class Methods and Attributes:")
for name, value in inspect.getmembers(attr):
if not name.startswith('_'): # Exclude private methods/attributes
st.write(f" - {name}: {type(value)}")
if callable(attr):
st.write("Signature:")
st.write(inspect.signature(attr))
st.write("Docstring:")
st.write(inspect.getdoc(attr))
st.write("---")
# Main Application Section
st.title("Graphrag Text Analysis")
@st.cache_resource
def load_model():
bert_model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
bert_model = AutoModel.from_pretrained(bert_model_name)
# Initialize Graphrag model
# Note: This part may need to be adjusted based on the actual structure of graphrag
model = None
for item in module_contents:
if 'model' in item.lower() or 'rag' in item.lower():
model_class = getattr(graphrag, item)
if inspect.isclass(model_class):
try:
# Attempt to initialize the model
# You may need to adjust the parameters based on the actual class signature
model = model_class(bert_model)
st.success(f"Successfully initialized {item}")
break
except Exception as e:
st.write(f"Tried initializing {item}, but got error: {str(e)}")
if model is None:
st.error("Could not initialize any Graphrag model. Please check the module structure.")
return tokenizer, model
def process_text(text, tokenizer, model):
if model is None:
return "Model not initialized"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
# Process outputs based on your specific task
# This is a placeholder; adjust according to your model's output
if hasattr(outputs, 'logits'):
logits = outputs.logits
elif isinstance(outputs, torch.Tensor):
logits = outputs
else:
return f"Unexpected output format: {type(outputs)}"
probabilities = torch.softmax(logits, dim=1)
return probabilities.tolist()[0]
tokenizer, model = load_model()
# Text input for single prediction
text_input = st.text_area("Enter text for analysis:")
if st.button("Analyze Text"):
if text_input:
result = process_text(text_input, tokenizer, model)
st.write(f"Analysis Result: {result}")
else:
st.write("Please enter some text to analyze.")
# Note about sample data
st.markdown("Note: To use a CSV file, you would typically upload it and process each row. For simplicity, we're using direct text input in this example.")