Spaces:
Sleeping
Sleeping
Update pages/21_GraphRag.py
Browse files- pages/21_GraphRag.py +71 -59
pages/21_GraphRag.py
CHANGED
|
@@ -1,70 +1,82 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
try:
|
| 24 |
-
import graphrag
|
| 25 |
-
import inspect
|
| 26 |
|
| 27 |
-
|
| 28 |
-
st.header("GraphRAG Module Contents")
|
| 29 |
-
graphrag_contents = dir(graphrag)
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
st.write(f"- {name}")
|
| 40 |
-
st.write(f" Signature: {inspect.signature(method)}")
|
| 41 |
-
st.write(f" Docstring: {method.__doc__}")
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
st.write(f"
|
| 46 |
-
st.write(f"Docstring: {attr.__doc__}")
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
# Display the module's docstring if available
|
| 54 |
-
if graphrag.__doc__:
|
| 55 |
-
st.header("GraphRAG Module Documentation")
|
| 56 |
-
st.write(graphrag.__doc__)
|
| 57 |
-
|
| 58 |
-
st.header("Next Steps")
|
| 59 |
-
st.write("""
|
| 60 |
-
Based on the information above, we need to determine:
|
| 61 |
-
1. How to create a graph representation of text using graphrag.
|
| 62 |
-
2. How to process this graph representation for analysis.
|
| 63 |
-
3. Whether graphrag provides any built-in analysis tools or if we need to integrate it with other libraries.
|
| 64 |
-
|
| 65 |
-
Please review the module contents and let me know which components seem most relevant for our text analysis task.
|
| 66 |
-
""")
|
| 67 |
-
|
| 68 |
-
except Exception as e:
|
| 69 |
-
st.error(f"An error occurred while exploring the graphrag module: {str(e)}")
|
| 70 |
-
st.write("Please check the installation of graphrag and its dependencies, and try running the app again.")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import graphrag
|
| 3 |
+
import networkx as nx
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
import torch
|
| 7 |
+
import nltk
|
| 8 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 9 |
+
nltk.download('punkt', quiet=True)
|
| 10 |
|
| 11 |
+
@st.cache_resource
|
| 12 |
+
def load_models():
|
| 13 |
+
# Load SentenceTransformer model for sentence embeddings
|
| 14 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 15 |
+
return sentence_model
|
| 16 |
|
| 17 |
+
def text_to_graph(text, sentence_model):
|
| 18 |
+
# Tokenize text into sentences
|
| 19 |
+
sentences = sent_tokenize(text)
|
| 20 |
+
|
| 21 |
+
# Create graph
|
| 22 |
+
G = nx.Graph()
|
| 23 |
+
|
| 24 |
+
# Add nodes (sentences) to the graph
|
| 25 |
+
for i, sentence in enumerate(sentences):
|
| 26 |
+
embedding = sentence_model.encode(sentence)
|
| 27 |
+
G.add_node(i, text=sentence, embedding=embedding)
|
| 28 |
+
|
| 29 |
+
# Add edges between sentences based on cosine similarity
|
| 30 |
+
for i in range(len(sentences)):
|
| 31 |
+
for j in range(i+1, len(sentences)):
|
| 32 |
+
similarity = torch.cosine_similarity(
|
| 33 |
+
torch.tensor(G.nodes[i]['embedding']),
|
| 34 |
+
torch.tensor(G.nodes[j]['embedding']),
|
| 35 |
+
dim=0
|
| 36 |
+
)
|
| 37 |
+
if similarity > 0.5: # Adjust this threshold as needed
|
| 38 |
+
G.add_edge(i, j, weight=similarity.item())
|
| 39 |
+
|
| 40 |
+
return G, sentences
|
| 41 |
|
| 42 |
+
def analyze_text(text, sentence_model):
|
| 43 |
+
G, sentences = text_to_graph(text, sentence_model)
|
| 44 |
+
|
| 45 |
+
# Basic graph analysis
|
| 46 |
+
num_nodes = G.number_of_nodes()
|
| 47 |
+
num_edges = G.number_of_edges()
|
| 48 |
+
avg_degree = sum(dict(G.degree()).values()) / num_nodes
|
| 49 |
+
|
| 50 |
+
# Identify important sentences using PageRank
|
| 51 |
+
pagerank = nx.pagerank(G)
|
| 52 |
+
important_sentences = sorted(pagerank, key=pagerank.get, reverse=True)[:3]
|
| 53 |
+
|
| 54 |
+
return G, sentences, num_nodes, num_edges, avg_degree, important_sentences
|
| 55 |
|
| 56 |
+
st.title("GraphRAG-based Text Analysis")
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
sentence_model = load_models()
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
text_input = st.text_area("Enter text for analysis:", height=200)
|
| 61 |
+
|
| 62 |
+
if st.button("Analyze Text"):
|
| 63 |
+
if text_input:
|
| 64 |
+
G, sentences, num_nodes, num_edges, avg_degree, important_sentences = analyze_text(text_input, sentence_model)
|
| 65 |
|
| 66 |
+
st.write(f"Number of sentences: {num_nodes}")
|
| 67 |
+
st.write(f"Number of connections: {num_edges}")
|
| 68 |
+
st.write(f"Average connections per sentence: {avg_degree:.2f}")
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
st.subheader("Most important sentences:")
|
| 71 |
+
for i in important_sentences:
|
| 72 |
+
st.write(f"- {sentences[i]}")
|
|
|
|
| 73 |
|
| 74 |
+
# Visualize graph
|
| 75 |
+
plt.figure(figsize=(10, 6))
|
| 76 |
+
pos = nx.spring_layout(G)
|
| 77 |
+
nx.draw(G, pos, with_labels=False, node_size=30, node_color='lightblue', edge_color='gray')
|
| 78 |
+
plt.title("Text as Graph")
|
| 79 |
+
st.pyplot(plt)
|
| 80 |
|
| 81 |
+
else:
|
| 82 |
+
st.write("Please enter some text to analyze.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|