Spaces:
Sleeping
Sleeping
Create 9_Cifar_10.py
Browse files- pages/9_Cifar_10.py +96 -0
pages/9_Cifar_10.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
from tensorflow.keras import datasets, layers, models
|
| 4 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
# Define the CNN model
|
| 10 |
+
def create_cnn_model():
|
| 11 |
+
model = models.Sequential()
|
| 12 |
+
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
|
| 13 |
+
model.add(layers.MaxPooling2D((2, 2)))
|
| 14 |
+
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
|
| 15 |
+
model.add(layers.MaxPooling2D((2, 2)))
|
| 16 |
+
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
|
| 17 |
+
model.add(layers.Flatten())
|
| 18 |
+
model.add(layers.Dense(64, activation='relu'))
|
| 19 |
+
model.add(layers.Dropout(0.5))
|
| 20 |
+
model.add(layers.Dense(10, activation='softmax'))
|
| 21 |
+
return model
|
| 22 |
+
|
| 23 |
+
# Streamlit app
|
| 24 |
+
st.title("CIFAR-10 Image Classification with CNN")
|
| 25 |
+
|
| 26 |
+
# Load CIFAR-10 data
|
| 27 |
+
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
|
| 28 |
+
train_images, test_images = train_images / 255.0, test_images / 255.0
|
| 29 |
+
|
| 30 |
+
# Display sample images
|
| 31 |
+
st.subheader("Sample Training Images")
|
| 32 |
+
fig, ax = plt.subplots(1, 5, figsize=(15, 3))
|
| 33 |
+
for i in range(5):
|
| 34 |
+
ax[i].imshow(train_images[i])
|
| 35 |
+
ax[i].axis('off')
|
| 36 |
+
st.pyplot(fig)
|
| 37 |
+
|
| 38 |
+
# Model creation
|
| 39 |
+
model = create_cnn_model()
|
| 40 |
+
|
| 41 |
+
# Compile the model
|
| 42 |
+
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
| 43 |
+
|
| 44 |
+
# Data augmentation
|
| 45 |
+
datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True)
|
| 46 |
+
datagen.fit(train_images)
|
| 47 |
+
|
| 48 |
+
# Training parameters
|
| 49 |
+
batch_size = st.slider("Batch Size", 32, 128, 64, 32)
|
| 50 |
+
epochs = st.slider("Epochs", 10, 50, 20, 10)
|
| 51 |
+
|
| 52 |
+
# Train button
|
| 53 |
+
if st.button("Train Model"):
|
| 54 |
+
with st.spinner("Training the model..."):
|
| 55 |
+
history = model.fit(datagen.flow(train_images, train_labels, batch_size=batch_size),
|
| 56 |
+
steps_per_epoch=len(train_images) / batch_size,
|
| 57 |
+
epochs=epochs,
|
| 58 |
+
validation_data=(test_images, test_labels))
|
| 59 |
+
|
| 60 |
+
st.success("Model training completed!")
|
| 61 |
+
|
| 62 |
+
# Display training curves
|
| 63 |
+
st.subheader("Training and Validation Accuracy")
|
| 64 |
+
fig, ax = plt.subplots()
|
| 65 |
+
ax.plot(history.history['accuracy'], label='Training Accuracy')
|
| 66 |
+
ax.plot(history.history['val_accuracy'], label='Validation Accuracy')
|
| 67 |
+
ax.set_xlabel('Epoch')
|
| 68 |
+
ax.set_ylabel('Accuracy')
|
| 69 |
+
ax.legend()
|
| 70 |
+
st.pyplot(fig)
|
| 71 |
+
|
| 72 |
+
st.subheader("Training and Validation Loss")
|
| 73 |
+
fig, ax = plt.subplots()
|
| 74 |
+
ax.plot(history.history['loss'], label='Training Loss')
|
| 75 |
+
ax.plot(history.history['val_loss'], label='Validation Loss')
|
| 76 |
+
ax.set_xlabel('Epoch')
|
| 77 |
+
ax.set_ylabel('Loss')
|
| 78 |
+
ax.legend()
|
| 79 |
+
st.pyplot(fig)
|
| 80 |
+
|
| 81 |
+
# Prediction on uploaded image
|
| 82 |
+
st.subheader("Make Predictions")
|
| 83 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 84 |
+
|
| 85 |
+
if uploaded_file is not None:
|
| 86 |
+
# Preprocess the uploaded image
|
| 87 |
+
image = Image.open(uploaded_file)
|
| 88 |
+
image = image.resize((32, 32))
|
| 89 |
+
image_array = np.array(image) / 255.0
|
| 90 |
+
|
| 91 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
| 92 |
+
|
| 93 |
+
if st.button("Predict"):
|
| 94 |
+
prediction = model.predict(np.expand_dims(image_array, axis=0))
|
| 95 |
+
predicted_class = np.argmax(prediction)
|
| 96 |
+
st.write(f"Predicted Class: {predicted_class} ({class_names[predicted_class]})")
|