Spaces:
Sleeping
Sleeping
Update pages/21_GraphRag.py
Browse files- pages/21_GraphRag.py +38 -20
pages/21_GraphRag.py
CHANGED
|
@@ -1,21 +1,27 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import
|
| 3 |
-
from datasets import Dataset
|
| 4 |
-
from transformers.models.graphormer.collating_graphormer import preprocess_item, GraphormerDataCollator
|
| 5 |
import torch
|
| 6 |
import networkx as nx
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
from collections import Counter
|
|
|
|
| 9 |
|
| 10 |
@st.cache_resource
|
| 11 |
def load_model():
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
)
|
| 17 |
-
|
| 18 |
-
return
|
| 19 |
|
| 20 |
def text_to_graph(text):
|
| 21 |
words = text.split()
|
|
@@ -33,36 +39,48 @@ def text_to_graph(text):
|
|
| 33 |
"num_nodes": len(G.nodes()),
|
| 34 |
"node_feat": [[ord(word[0])] for word in words], # Use ASCII value of first letter as feature
|
| 35 |
"edge_attr": [[1] for _ in range(len(G.edges()) * 2)], # All edges have the same attribute
|
| 36 |
-
"y": [1] # Placeholder label, will be ignored during inference
|
| 37 |
}
|
| 38 |
|
| 39 |
-
def analyze_text(text,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
graph = text_to_graph(text)
|
| 41 |
-
dataset = Dataset.from_dict({"train": [graph]})
|
| 42 |
-
dataset_processed = dataset.map(preprocess_item, batched=False)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
| 47 |
with torch.no_grad():
|
| 48 |
-
outputs = model(**
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
probabilities = torch.softmax(logits, dim=1)
|
| 52 |
sentiment = "Positive" if probabilities[0][1] > probabilities[0][0] else "Negative"
|
| 53 |
confidence = probabilities[0][1].item() if sentiment == "Positive" else probabilities[0][0].item()
|
| 54 |
|
| 55 |
return sentiment, confidence, graph
|
| 56 |
|
| 57 |
-
st.title("
|
| 58 |
|
| 59 |
-
|
| 60 |
|
| 61 |
text_input = st.text_area("Enter text for analysis:", height=200)
|
| 62 |
|
| 63 |
if st.button("Analyze Text"):
|
| 64 |
if text_input:
|
| 65 |
-
sentiment, confidence, graph = analyze_text(text_input,
|
| 66 |
st.write(f"Sentiment: {sentiment}")
|
| 67 |
st.write(f"Confidence: {confidence:.2f}")
|
| 68 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
import networkx as nx
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from collections import Counter
|
| 7 |
+
import graphrag # Import the graphrag library
|
| 8 |
|
| 9 |
@st.cache_resource
|
| 10 |
def load_model():
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 12 |
+
bert_model = AutoModel.from_pretrained("bert-base-uncased")
|
| 13 |
+
|
| 14 |
+
# Initialize GraphRAG model
|
| 15 |
+
# Note: You may need to adjust these parameters based on GraphRAG's actual interface
|
| 16 |
+
graph_rag_model = graphrag.GraphRAG(
|
| 17 |
+
bert_model,
|
| 18 |
+
num_labels=2, # For binary sentiment classification
|
| 19 |
+
num_hidden_layers=2,
|
| 20 |
+
hidden_size=768,
|
| 21 |
+
intermediate_size=3072,
|
| 22 |
)
|
| 23 |
+
|
| 24 |
+
return tokenizer, graph_rag_model
|
| 25 |
|
| 26 |
def text_to_graph(text):
|
| 27 |
words = text.split()
|
|
|
|
| 39 |
"num_nodes": len(G.nodes()),
|
| 40 |
"node_feat": [[ord(word[0])] for word in words], # Use ASCII value of first letter as feature
|
| 41 |
"edge_attr": [[1] for _ in range(len(G.edges()) * 2)], # All edges have the same attribute
|
|
|
|
| 42 |
}
|
| 43 |
|
| 44 |
+
def analyze_text(text, tokenizer, model):
|
| 45 |
+
# Tokenize the text
|
| 46 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 47 |
+
|
| 48 |
+
# Create graph representation
|
| 49 |
graph = text_to_graph(text)
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
# Combine tokenized input with graph representation
|
| 52 |
+
# Note: You may need to adjust this based on GraphRAG's actual input requirements
|
| 53 |
+
combined_input = {
|
| 54 |
+
"input_ids": inputs["input_ids"],
|
| 55 |
+
"attention_mask": inputs["attention_mask"],
|
| 56 |
+
"edge_index": torch.tensor(graph["edge_index"], dtype=torch.long),
|
| 57 |
+
"node_feat": torch.tensor(graph["node_feat"], dtype=torch.float),
|
| 58 |
+
"edge_attr": torch.tensor(graph["edge_attr"], dtype=torch.float),
|
| 59 |
+
"num_nodes": graph["num_nodes"]
|
| 60 |
+
}
|
| 61 |
|
| 62 |
+
# Perform inference
|
| 63 |
with torch.no_grad():
|
| 64 |
+
outputs = model(**combined_input)
|
| 65 |
|
| 66 |
+
# Process outputs
|
| 67 |
+
# Note: Adjust this based on GraphRAG's actual output format
|
| 68 |
+
logits = outputs.logits if hasattr(outputs, 'logits') else outputs
|
| 69 |
probabilities = torch.softmax(logits, dim=1)
|
| 70 |
sentiment = "Positive" if probabilities[0][1] > probabilities[0][0] else "Negative"
|
| 71 |
confidence = probabilities[0][1].item() if sentiment == "Positive" else probabilities[0][0].item()
|
| 72 |
|
| 73 |
return sentiment, confidence, graph
|
| 74 |
|
| 75 |
+
st.title("GraphRAG-based Text Analysis")
|
| 76 |
|
| 77 |
+
tokenizer, model = load_model()
|
| 78 |
|
| 79 |
text_input = st.text_area("Enter text for analysis:", height=200)
|
| 80 |
|
| 81 |
if st.button("Analyze Text"):
|
| 82 |
if text_input:
|
| 83 |
+
sentiment, confidence, graph = analyze_text(text_input, tokenizer, model)
|
| 84 |
st.write(f"Sentiment: {sentiment}")
|
| 85 |
st.write(f"Confidence: {confidence:.2f}")
|
| 86 |
|