Spaces:
Sleeping
Sleeping
Update pages/13_TransferLearning.py
Browse files- pages/13_TransferLearning.py +16 -38
pages/13_TransferLearning.py
CHANGED
|
@@ -1,13 +1,21 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import tensorflow as tf
|
| 3 |
from tensorflow.keras import layers, models, applications
|
| 4 |
-
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
-
import numpy as np
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Streamlit app
|
| 13 |
st.title("Transfer Learning with VGG16 for Image Classification")
|
|
@@ -16,34 +24,6 @@ st.title("Transfer Learning with VGG16 for Image Classification")
|
|
| 16 |
batch_size = st.slider("Batch Size", 16, 128, 32, 16)
|
| 17 |
epochs = st.slider("Epochs", 5, 50, 10, 5)
|
| 18 |
|
| 19 |
-
# Data augmentation and preprocessing
|
| 20 |
-
train_datagen = ImageDataGenerator(
|
| 21 |
-
rescale=1./255,
|
| 22 |
-
rotation_range=40,
|
| 23 |
-
width_shift_range=0.2,
|
| 24 |
-
height_shift_range=0.2,
|
| 25 |
-
shear_range=0.2,
|
| 26 |
-
zoom_range=0.2,
|
| 27 |
-
horizontal_flip=True,
|
| 28 |
-
fill_mode='nearest'
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
validation_datagen = ImageDataGenerator(rescale=1./255)
|
| 32 |
-
|
| 33 |
-
train_generator = train_datagen.flow_from_directory(
|
| 34 |
-
train_dir,
|
| 35 |
-
target_size=(150, 150),
|
| 36 |
-
batch_size=batch_size,
|
| 37 |
-
class_mode='binary'
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
validation_generator = validation_datagen.flow_from_directory(
|
| 41 |
-
validation_dir,
|
| 42 |
-
target_size=(150, 150),
|
| 43 |
-
batch_size=batch_size,
|
| 44 |
-
class_mode='binary'
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
# Load the pre-trained VGG16 model
|
| 48 |
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3))
|
| 49 |
|
|
@@ -70,11 +50,9 @@ model.compile(optimizer='adam',
|
|
| 70 |
if st.button("Train Model"):
|
| 71 |
with st.spinner("Training the model..."):
|
| 72 |
history = model.fit(
|
| 73 |
-
|
| 74 |
-
steps_per_epoch=train_generator.samples // train_generator.batch_size,
|
| 75 |
epochs=epochs,
|
| 76 |
-
validation_data=
|
| 77 |
-
validation_steps=validation_generator.samples // validation_generator.batch_size
|
| 78 |
)
|
| 79 |
|
| 80 |
st.success("Model training completed!")
|
|
@@ -100,5 +78,5 @@ if st.button("Train Model"):
|
|
| 100 |
|
| 101 |
# Evaluate the model
|
| 102 |
if st.button("Evaluate Model"):
|
| 103 |
-
test_loss, test_acc = model.evaluate(
|
| 104 |
st.write(f"Validation accuracy: {test_acc}")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import tensorflow as tf
|
| 3 |
from tensorflow.keras import layers, models, applications
|
| 4 |
+
import tensorflow_datasets as tfds
|
| 5 |
import matplotlib.pyplot as plt
|
|
|
|
| 6 |
|
| 7 |
+
# Load the dataset
|
| 8 |
+
dataset_name = "cats_vs_dogs"
|
| 9 |
+
(ds_train, ds_val), ds_info = tfds.load(dataset_name, split=['train[:80%]', 'train[80%:]'], with_info=True, as_supervised=True)
|
| 10 |
+
|
| 11 |
+
# Preprocess the dataset
|
| 12 |
+
def preprocess_image(image, label):
|
| 13 |
+
image = tf.image.resize(image, (150, 150))
|
| 14 |
+
image = image / 255.0
|
| 15 |
+
return image, label
|
| 16 |
+
|
| 17 |
+
ds_train = ds_train.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE)
|
| 18 |
+
ds_val = ds_val.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE)
|
| 19 |
|
| 20 |
# Streamlit app
|
| 21 |
st.title("Transfer Learning with VGG16 for Image Classification")
|
|
|
|
| 24 |
batch_size = st.slider("Batch Size", 16, 128, 32, 16)
|
| 25 |
epochs = st.slider("Epochs", 5, 50, 10, 5)
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# Load the pre-trained VGG16 model
|
| 28 |
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3))
|
| 29 |
|
|
|
|
| 50 |
if st.button("Train Model"):
|
| 51 |
with st.spinner("Training the model..."):
|
| 52 |
history = model.fit(
|
| 53 |
+
ds_train,
|
|
|
|
| 54 |
epochs=epochs,
|
| 55 |
+
validation_data=ds_val
|
|
|
|
| 56 |
)
|
| 57 |
|
| 58 |
st.success("Model training completed!")
|
|
|
|
| 78 |
|
| 79 |
# Evaluate the model
|
| 80 |
if st.button("Evaluate Model"):
|
| 81 |
+
test_loss, test_acc = model.evaluate(ds_val, verbose=2)
|
| 82 |
st.write(f"Validation accuracy: {test_acc}")
|