Spaces:
Sleeping
Sleeping
Update pages/42_regression.py
Browse files- pages/42_regression.py +67 -37
pages/42_regression.py
CHANGED
|
@@ -1,49 +1,79 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
w = st.sidebar.slider('W (slope)', min_value=-10.0, max_value=10.0, value=1.0, step=0.1)
|
| 10 |
-
b = st.sidebar.slider('B (intercept)', min_value=-100.0, max_value=100.0, value=0.0, step=1.0)
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
# Plot the
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
fig.update_layout(
|
| 37 |
-
title=f'y = {w} * x + {b}',
|
| 38 |
-
xaxis=dict(range=[-100, 100]),
|
| 39 |
-
yaxis=dict(range=[-2, 2], showticklabels=False),
|
| 40 |
-
showlegend=False,
|
| 41 |
-
height=400,
|
| 42 |
-
margin=dict(t=50, b=10)
|
| 43 |
-
)
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.optim as optim
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
|
| 8 |
+
# Step 1: Create Synthetic Data
|
| 9 |
+
np.random.seed(42)
|
| 10 |
+
X = np.linspace(-10, 10, 1000)
|
| 11 |
+
y = 2.5 * X + np.random.normal(0, 2, X.shape) # Linear relation with noise
|
| 12 |
|
| 13 |
+
# Split into training and test sets
|
| 14 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Convert to PyTorch tensors
|
| 17 |
+
X_train = torch.tensor(X_train, dtype=torch.float32).view(-1, 1)
|
| 18 |
+
y_train = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)
|
| 19 |
+
X_test = torch.tensor(X_test, dtype=torch.float32).view(-1, 1)
|
| 20 |
+
y_test = torch.tensor(y_test, dtype=torch.float32).view(-1, 1)
|
| 21 |
|
| 22 |
+
# Step 2: Define and Train a Neural Network Model
|
| 23 |
+
class SimpleNN(nn.Module):
|
| 24 |
+
def __init__(self):
|
| 25 |
+
super(SimpleNN, self).__init__()
|
| 26 |
+
self.fc1 = nn.Linear(1, 10)
|
| 27 |
+
self.fc2 = nn.Linear(10, 1)
|
| 28 |
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
x = torch.relu(self.fc1(x))
|
| 31 |
+
x = self.fc2(x)
|
| 32 |
+
return x
|
| 33 |
|
| 34 |
+
# Initialize model, loss function, and optimizer
|
| 35 |
+
model = SimpleNN()
|
| 36 |
+
criterion = nn.MSELoss()
|
| 37 |
+
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
| 38 |
|
| 39 |
+
# Training loop
|
| 40 |
+
epochs = 500
|
| 41 |
+
losses = []
|
| 42 |
|
| 43 |
+
for epoch in range(epochs):
|
| 44 |
+
model.train()
|
| 45 |
+
optimizer.zero_grad()
|
| 46 |
+
outputs = model(X_train)
|
| 47 |
+
loss = criterion(outputs, y_train)
|
| 48 |
+
loss.backward()
|
| 49 |
+
optimizer.step()
|
| 50 |
+
losses.append(loss.item())
|
| 51 |
+
if (epoch + 1) % 50 == 0:
|
| 52 |
+
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
|
| 53 |
|
| 54 |
+
# Step 3: Plot the Results
|
| 55 |
+
# Plot the synthetic data and the model's predictions
|
| 56 |
+
model.eval()
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
predicted = model(X_test).numpy()
|
| 59 |
|
| 60 |
+
plt.figure(figsize=(12, 6))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
# Plot data and predictions
|
| 63 |
+
plt.subplot(1, 2, 1)
|
| 64 |
+
plt.scatter(X_test, y_test, label='Original data', alpha=0.5)
|
| 65 |
+
plt.scatter(X_test, predicted, label='Fitted line', alpha=0.5)
|
| 66 |
+
plt.title('Regression Results')
|
| 67 |
+
plt.xlabel('X')
|
| 68 |
+
plt.ylabel('y')
|
| 69 |
+
plt.legend()
|
| 70 |
|
| 71 |
+
# Plot training loss
|
| 72 |
+
plt.subplot(1, 2, 2)
|
| 73 |
+
plt.plot(losses)
|
| 74 |
+
plt.title('Training Loss')
|
| 75 |
+
plt.xlabel('Epoch')
|
| 76 |
+
plt.ylabel('Loss')
|
| 77 |
+
|
| 78 |
+
plt.tight_layout()
|
| 79 |
+
plt.show()
|