Spaces:
Sleeping
Sleeping
Update pages/42_regression.py
Browse files- pages/42_regression.py +67 -77
pages/42_regression.py
CHANGED
|
@@ -1,79 +1,69 @@
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
for
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
#
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
plt.legend()
|
| 70 |
-
|
| 71 |
-
# Plot training loss
|
| 72 |
-
plt.subplot(1, 2, 2)
|
| 73 |
-
plt.plot(losses)
|
| 74 |
-
plt.title('Training Loss')
|
| 75 |
-
plt.xlabel('Epoch')
|
| 76 |
-
plt.ylabel('Loss')
|
| 77 |
-
|
| 78 |
-
plt.tight_layout()
|
| 79 |
-
plt.show()
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
from tensorflow.keras.models import Sequential
|
| 6 |
+
from tensorflow.keras.layers import Dense
|
| 7 |
+
|
| 8 |
+
# Title
|
| 9 |
+
st.title("Neural Network Line Fitting")
|
| 10 |
+
|
| 11 |
+
# Sidebar sliders for generating synthetic data
|
| 12 |
+
st.sidebar.header("Synthetic Data Controls")
|
| 13 |
+
true_w = st.sidebar.slider('True W (slope)', min_value=-10.0, max_value=10.0, value=2.0, step=0.1)
|
| 14 |
+
true_b = st.sidebar.slider('True B (intercept)', min_value=-10.0, max_value=10.0, value=1.0, step=0.1)
|
| 15 |
+
num_points = st.sidebar.slider('Number of data points', min_value=10, max_value=1000, value=100, step=10)
|
| 16 |
+
|
| 17 |
+
# Generate synthetic data
|
| 18 |
+
np.random.seed(0)
|
| 19 |
+
x_data = np.random.uniform(-100, 100, num_points)
|
| 20 |
+
noise = np.random.normal(0, 10, num_points)
|
| 21 |
+
y_data = true_w * x_data + true_b + noise
|
| 22 |
+
|
| 23 |
+
# Neural network model
|
| 24 |
+
model = Sequential([
|
| 25 |
+
Dense(1, input_dim=1)
|
| 26 |
+
])
|
| 27 |
+
|
| 28 |
+
model.compile(optimizer='adam', loss='mean_squared_error')
|
| 29 |
+
|
| 30 |
+
# Train the model
|
| 31 |
+
model.fit(x_data, y_data, epochs=100, verbose=0)
|
| 32 |
+
|
| 33 |
+
# Get the trained parameters
|
| 34 |
+
trained_w = model.layers[0].get_weights()[0][0][0]
|
| 35 |
+
trained_b = model.layers[0].get_weights()[1][0]
|
| 36 |
+
|
| 37 |
+
# Make predictions
|
| 38 |
+
x_pred = np.linspace(-100, 100, 200)
|
| 39 |
+
y_pred = model.predict(x_pred)
|
| 40 |
+
|
| 41 |
+
# Plot the results
|
| 42 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 43 |
+
|
| 44 |
+
# Plot for the x-axis (bottom line)
|
| 45 |
+
ax.hlines(-1, -100, 100, color='blue', linestyle='--') # X-axis
|
| 46 |
+
|
| 47 |
+
# Plot for the y-axis (top line)
|
| 48 |
+
ax.hlines(1, -100, 100, color='blue', linestyle='--') # Y-axis
|
| 49 |
+
|
| 50 |
+
# Plot the synthetic data points
|
| 51 |
+
ax.scatter(x_data, y_data, color='gray', alpha=0.5, label='Data points')
|
| 52 |
+
|
| 53 |
+
# Plot the prediction line
|
| 54 |
+
ax.plot(x_pred, y_pred, color='red', label=f'Fitted line: y = {trained_w:.2f}x + {trained_b:.2f}')
|
| 55 |
+
|
| 56 |
+
# Update the layout
|
| 57 |
+
ax.set_xlim(-100, 100)
|
| 58 |
+
ax.set_ylim(-2, 2)
|
| 59 |
+
ax.set_xlabel('X-axis and Y-axis')
|
| 60 |
+
ax.set_yticks([]) # Hide y-axis ticks
|
| 61 |
+
ax.set_title('Neural Network Line Fitting')
|
| 62 |
+
ax.legend()
|
| 63 |
+
ax.grid(True)
|
| 64 |
+
|
| 65 |
+
# Display the plot in Streamlit
|
| 66 |
+
st.pyplot(fig)
|
| 67 |
+
|
| 68 |
+
# Display the trained parameters
|
| 69 |
+
st.write(f'Trained parameters: w = {trained_w:.2f}, b = {trained_b:.2f}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|