Spaces:
Sleeping
Sleeping
Update pages/5_RealDataSetRegression.py
Browse files- pages/5_RealDataSetRegression.py +109 -101
pages/5_RealDataSetRegression.py
CHANGED
|
@@ -1,107 +1,115 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
-
import
|
| 5 |
-
from
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
plt.ylabel(label)
|
| 31 |
-
|
| 32 |
-
random_examples = df.sample(n=200)
|
| 33 |
-
plt.scatter(random_examples[feature], random_examples[label])
|
| 34 |
-
|
| 35 |
-
x0 = 0
|
| 36 |
-
y0 = trained_bias
|
| 37 |
-
x1 = random_examples[feature].max()
|
| 38 |
-
y1 = trained_bias + (trained_weight * x1)
|
| 39 |
-
plt.plot([x0, x1], [y0, y1], c='r')
|
| 40 |
-
|
| 41 |
-
st.pyplot(plt)
|
| 42 |
-
|
| 43 |
-
# Function to plot the loss curve
|
| 44 |
-
def plot_the_loss_curve(epochs, rmse):
|
| 45 |
-
plt.figure(figsize=(10, 6))
|
| 46 |
-
plt.xlabel("Epoch")
|
| 47 |
-
plt.ylabel("Root Mean Squared Error")
|
| 48 |
-
|
| 49 |
-
plt.plot(epochs, rmse, label="Loss")
|
| 50 |
-
plt.legend()
|
| 51 |
-
plt.ylim([rmse.min()*0.97, rmse.max()])
|
| 52 |
-
st.pyplot(plt)
|
| 53 |
-
|
| 54 |
-
# Load the dataset
|
| 55 |
-
@st.cache_data
|
| 56 |
-
def load_data():
|
| 57 |
-
url = "https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv"
|
| 58 |
-
df = pd.read_csv(url)
|
| 59 |
-
df["median_house_value"] /= 1000.0
|
| 60 |
-
return df
|
| 61 |
-
|
| 62 |
-
training_df = load_data()
|
| 63 |
|
| 64 |
# Streamlit interface
|
| 65 |
-
st.title(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
st.write("https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/linear_regression_with_a_real_dataset.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=linear_regression_real_tf2-colab&hl=en")
|
| 68 |
-
|
| 69 |
-
if st.checkbox('Show raw data'):
|
| 70 |
-
st.write(training_df.head())
|
| 71 |
-
|
| 72 |
-
learning_rate = st.sidebar.slider('Learning Rate', min_value=0.001, max_value=1.0, value=0.01, step=0.01)
|
| 73 |
-
epochs = st.sidebar.slider('Epochs', min_value=1, max_value=1000, value=30, step=1)
|
| 74 |
-
batch_size = st.sidebar.slider('Batch Size', min_value=1, max_value=len(training_df), value=30, step=1)
|
| 75 |
-
feature = st.sidebar.selectbox('Select Feature', training_df.columns)
|
| 76 |
-
label = 'median_house_value'
|
| 77 |
-
|
| 78 |
-
my_model = None # Initialize the model variable
|
| 79 |
-
|
| 80 |
-
if st.sidebar.button('Run'):
|
| 81 |
-
my_model = build_model(learning_rate)
|
| 82 |
-
weight, bias, epochs, rmse = train_model(my_model, training_df, feature, label, epochs, batch_size)
|
| 83 |
-
|
| 84 |
-
st.subheader('Model Plot')
|
| 85 |
-
plot_the_model(weight, bias, feature, label, training_df)
|
| 86 |
-
|
| 87 |
-
st.subheader('Loss Curve')
|
| 88 |
-
plot_the_loss_curve(epochs, rmse)
|
| 89 |
-
|
| 90 |
-
# Function to make predictions
|
| 91 |
-
def predict_house_values(n, feature, label):
|
| 92 |
-
batch = training_df[feature][10000:10000 + n]
|
| 93 |
-
predicted_values = my_model.predict_on_batch(x=batch)
|
| 94 |
-
|
| 95 |
-
st.write("feature label predicted")
|
| 96 |
-
st.write(" value value value")
|
| 97 |
-
st.write(" in thousand$ in thousand$")
|
| 98 |
-
st.write("--------------------------------------")
|
| 99 |
-
for i in range(n):
|
| 100 |
-
st.write("%5.0f %6.0f %15.0f" % (training_df[feature][10000 + i],
|
| 101 |
-
training_df[label][10000 + i],
|
| 102 |
-
predicted_values[i][0] ))
|
| 103 |
-
|
| 104 |
-
n_predictions = st.sidebar.slider('Number of Predictions', min_value=1, max_value=100, value=10)
|
| 105 |
-
if my_model is not None and st.sidebar.button('Predict'):
|
| 106 |
-
st.subheader('Predictions')
|
| 107 |
-
predict_house_values(n_predictions, feature, label)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from sklearn.datasets import load_iris
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from sklearn.preprocessing import StandardScaler
|
| 8 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 9 |
+
from tensorflow.keras.models import Sequential
|
| 10 |
+
from tensorflow.keras.layers import Dense
|
| 11 |
+
from tensorflow.keras.utils import plot_model
|
| 12 |
+
import io
|
| 13 |
+
|
| 14 |
+
# Load Iris dataset
|
| 15 |
+
iris = load_iris()
|
| 16 |
+
X = iris.data
|
| 17 |
+
y = iris.target
|
| 18 |
+
|
| 19 |
+
# Only use the first two classes for binary classification
|
| 20 |
+
X = X[y != 2]
|
| 21 |
+
y = y[y != 2]
|
| 22 |
+
|
| 23 |
+
# Split the dataset into training and testing sets
|
| 24 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 25 |
+
|
| 26 |
+
# Standardize the data
|
| 27 |
+
scaler = StandardScaler()
|
| 28 |
+
X_train = scaler.fit_transform(X_train)
|
| 29 |
+
X_test = scaler.transform(X_test)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# Streamlit interface
|
| 32 |
+
st.title('Logistic Regression with Keras on Iris Dataset')
|
| 33 |
+
st.write("""
|
| 34 |
+
## Introduction
|
| 35 |
+
Logistic Regression is a statistical model used for binary classification tasks.
|
| 36 |
+
In this tutorial, we will use the Iris dataset to classify whether a flower is
|
| 37 |
+
**Setosa** or **Versicolor** based on its features.
|
| 38 |
+
""")
|
| 39 |
+
|
| 40 |
+
# Display Iris dataset information
|
| 41 |
+
st.write("### Iris Dataset")
|
| 42 |
+
st.write("""
|
| 43 |
+
The Iris dataset contains 150 samples of iris flowers, each described by four features:
|
| 44 |
+
sepal length, sepal width, petal length, and petal width. There are three classes: Setosa, Versicolor, and Virginica.
|
| 45 |
+
For this example, we'll only use the Setosa and Versicolor classes.
|
| 46 |
+
""")
|
| 47 |
+
st.write(pd.DataFrame(X, columns=iris.feature_names).head())
|
| 48 |
+
|
| 49 |
+
# Plotting sample data
|
| 50 |
+
st.write("### Sample Data Distribution")
|
| 51 |
+
fig, ax = plt.subplots()
|
| 52 |
+
for i, color in zip([0, 1], ['blue', 'orange']):
|
| 53 |
+
idx = np.where(y == i)
|
| 54 |
+
ax.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], edgecolor='k')
|
| 55 |
+
ax.set_xlabel(iris.feature_names[0])
|
| 56 |
+
ax.set_ylabel(iris.feature_names[1])
|
| 57 |
+
ax.legend()
|
| 58 |
+
st.pyplot(fig)
|
| 59 |
+
|
| 60 |
+
# User input for number of epochs
|
| 61 |
+
epochs = st.slider('Select number of epochs for training:', min_value=10, max_value=200, value=100, step=10)
|
| 62 |
+
|
| 63 |
+
# Build the logistic regression model using Keras
|
| 64 |
+
model = Sequential()
|
| 65 |
+
model.add(Dense(1, input_dim=4, activation='sigmoid'))
|
| 66 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
| 67 |
+
|
| 68 |
+
# Display the model architecture
|
| 69 |
+
st.write("### Model Architecture")
|
| 70 |
+
st.write(model.summary())
|
| 71 |
+
fig, ax = plt.subplots()
|
| 72 |
+
buf = io.BytesIO()
|
| 73 |
+
plot_model(model, to_file=buf, show_shapes=True, show_layer_names=True)
|
| 74 |
+
buf.seek(0)
|
| 75 |
+
st.image(buf, caption='Logistic Regression Model Architecture', use_column_width=True)
|
| 76 |
+
|
| 77 |
+
# Train the model
|
| 78 |
+
model.fit(X_train, y_train, epochs=epochs, verbose=0)
|
| 79 |
+
|
| 80 |
+
# Predict and evaluate the model
|
| 81 |
+
y_pred_train = (model.predict(X_train) > 0.5).astype("int32")
|
| 82 |
+
y_pred_test = (model.predict(X_test) > 0.5).astype("int32")
|
| 83 |
+
|
| 84 |
+
train_accuracy = accuracy_score(y_train, y_pred_train)
|
| 85 |
+
test_accuracy = accuracy_score(y_test, y_pred_test)
|
| 86 |
+
|
| 87 |
+
conf_matrix = confusion_matrix(y_test, y_pred_test)
|
| 88 |
+
|
| 89 |
+
st.write('## Model Performance')
|
| 90 |
+
st.write(f'Training Accuracy: {train_accuracy:.2f}')
|
| 91 |
+
st.write(f'Testing Accuracy: {test_accuracy:.2f}')
|
| 92 |
+
|
| 93 |
+
st.write('## Confusion Matrix')
|
| 94 |
+
fig, ax = plt.subplots()
|
| 95 |
+
ax.matshow(conf_matrix, cmap=plt.cm.Blues, alpha=0.3)
|
| 96 |
+
for i in range(conf_matrix.shape[0]):
|
| 97 |
+
for j in range(conf_matrix.shape[1]):
|
| 98 |
+
ax.text(x=j, y=i, s=conf_matrix[i, j], va='center', ha='center')
|
| 99 |
+
|
| 100 |
+
plt.xlabel('Predicted Label')
|
| 101 |
+
plt.ylabel('True Label')
|
| 102 |
+
st.pyplot(fig)
|
| 103 |
+
|
| 104 |
+
st.write('## Make a Prediction')
|
| 105 |
+
sepal_length = st.number_input('Sepal Length (cm)', min_value=0.0, max_value=10.0, value=5.0)
|
| 106 |
+
sepal_width = st.number_input('Sepal Width (cm)', min_value=0.0, max_value=10.0, value=3.5)
|
| 107 |
+
petal_length = st.number_input('Petal Length (cm)', min_value=0.0, max_value=10.0, value=1.4)
|
| 108 |
+
petal_width = st.number_input('Petal Width (cm)', min_value=0.0, max_value=10.0, value=0.2)
|
| 109 |
+
|
| 110 |
+
if st.button('Predict'):
|
| 111 |
+
input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
| 112 |
+
input_data_scaled = scaler.transform(input_data)
|
| 113 |
+
prediction = (model.predict(input_data_scaled) > 0.5).astype("int32")
|
| 114 |
+
st.write(f'Prediction: {"Setosa" if prediction[0][0] == 0 else "Versicolor"}')
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|