# Install required packages # !pip install streamlit torch torchvision matplotlib datasets transformers # Import Libraries import streamlit as st import torch import torch.nn as nn import torch.optim as optim import torchvision # Add this import from torchvision import datasets, models, transforms from torch.utils.data import DataLoader import numpy as np import time import os import copy import matplotlib.pyplot as plt from transformers import Trainer, TrainingArguments from datasets import load_dataset # Streamlit Interface st.title("Fine-Tuning ResNet for Custom Image Classification") # Introduction Section st.markdown(""" ### Introduction In this exercise, we will fine-tune a pre-trained ResNet model on a custom image classification task using PyTorch. The ResNet (Residual Network) architecture helps in training very deep neural networks by using skip connections to mitigate the vanishing gradient problem. """) # User Inputs st.sidebar.header("Model Parameters") input_size = st.sidebar.number_input("Input Size", value=224) batch_size = st.sidebar.number_input("Batch Size", value=32) num_epochs = st.sidebar.number_input("Number of Epochs", value=25) learning_rate = st.sidebar.number_input("Learning Rate", value=0.001) momentum = st.sidebar.number_input("Momentum", value=0.9) # Data Preparation Section st.markdown(""" ### Data Preparation We will use the CIFAR-10 dataset, which contains 60,000 images from 10 classes. The dataset will be split into training and validation sets, and transformations will be applied to augment the data and normalize it. """) transform = transforms.Compose([ transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) val_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4) dataloaders = {'train': train_loader, 'val': val_loader} dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)} class_names = train_dataset.classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Visualize a few training images st.markdown("#### Sample Training Images") def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) fig, ax = plt.subplots() ax.imshow(inp) if title is not None: ax.set_title(title) st.pyplot(fig) inputs, classes = next(iter(dataloaders['train'])) out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) # Model Preparation Section st.markdown(""" ### Model Preparation We will use a pre-trained ResNet-18 model and fine-tune the final fully connected layer to match the number of classes in our custom dataset. """) # Load Pre-trained ResNet Model model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, len(class_names)) model_ft = model_ft.to(device) # Define Loss Function and Optimizer criterion = nn.CrossEntropyLoss() optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=momentum) exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # Training Section st.markdown(""" ### Training We will train the model using stochastic gradient descent (SGD) with momentum and a learning rate scheduler. The training and validation loss and accuracy will be plotted to monitor the training process. """) # Train and Evaluate the Model def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 train_loss_history = [] val_loss_history = [] train_acc_history = [] val_acc_history = [] for epoch in range(num_epochs): st.write('Epoch {}/{}'.format(epoch, num_epochs - 1)) st.write('-' * 10) for phase in ['train', 'val']: if phase == 'train': model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] st.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) if phase == 'train': train_loss_history.append(epoch_loss) train_acc_history.append(epoch_acc) else: val_loss_history.append(epoch_loss) val_acc_history.append(epoch_acc) if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) st.write() time_elapsed = time.time() - since st.write('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) st.write('Best val Acc: {:4f}'.format(best_acc)) model.load_state_dict(best_model_wts) # Plot training history epochs_range = range(num_epochs) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5)) ax1.plot(epochs_range, train_loss_history, label='Training Loss') ax1.plot(epochs_range, val_loss_history, label='Validation Loss') ax1.legend(loc='upper right') ax1.set_title('Training and Validation Loss') ax2.plot(epochs_range, train_acc_history, label='Training Accuracy') ax2.plot(epochs_range, val_acc_history, label='Validation Accuracy') ax2.legend(loc='lower right') ax2.set_title('Training and Validation Accuracy') st.pyplot(fig) return model if st.button('Train Model'): model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs) # Save the Model torch.save(model_ft.state_dict(), 'fine_tuned_resnet.pth') st.write("Model saved as 'fine_tuned_resnet.pth'") # Hugging Face Integration Section st.markdown(""" ### Hugging Face Integration We will use the Hugging Face library to load the dataset and prepare it for training. This integration will allow us to leverage the benefits of Hugging Face's powerful tools and APIs. """) # This part is just illustrative since Hugging Face's Trainer does not natively support ResNet. # However, you can still follow a similar approach for transformer models and NLP datasets. if st.button('Train with Hugging Face'): st.write("This section is illustrative and typically used for NLP tasks with Hugging Face transformers.")