import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Load the Hugging Face API token from st.secrets # hf_api_token = st.secrets["HUGGINGFACE_API_TOKEN"] # Load the model and tokenizer using the API token model_name = "TinyLlama/TinyLlama_v1.1" # Create a text generation pipeline # generator = pipeline("text-generation", model=model_name, token=hf_api_token) generator = pipeline("text-generation", model=model_name) # Streamlit UI st.title("TinyLlama_v1.1") #st.write(hf_api_token) # Input prompt prompt = st.text_input("Enter your prompt:", value="Explain the significance of the theory of relativity.") # Generate text on button click if st.button("Generate Text"): # Generate text using the pipeline output = generator(prompt, max_length=100, num_return_sequences=1) # Display the generated text st.write(output[0]['generated_text'])