Restrict models
Browse files- app.py +3 -2
- arena/c4.py +2 -2
- arena/game.py +0 -2
- arena/llm.py +27 -19
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
from arena.c4 import make_display
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
-
app = make_display()
|
| 5 |
-
|
| 6 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 7 |
app.launch()
|
|
|
|
| 1 |
from arena.c4 import make_display
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
|
| 4 |
|
|
|
|
|
|
|
| 5 |
if __name__ == "__main__":
|
| 6 |
+
load_dotenv(override=True)
|
| 7 |
+
app = make_display()
|
| 8 |
app.launch()
|
arena/c4.py
CHANGED
|
@@ -3,7 +3,6 @@ from arena.board import RED, YELLOW
|
|
| 3 |
from arena.llm import LLM
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
-
all_model_names = LLM.all_model_names()
|
| 7 |
|
| 8 |
css = "footer{display:none !important}"
|
| 9 |
|
|
@@ -80,6 +79,7 @@ def yellow_model_callback(game, new_model_name):
|
|
| 80 |
|
| 81 |
|
| 82 |
def player_section(name, default):
|
|
|
|
| 83 |
with gr.Row():
|
| 84 |
gr.Markdown(
|
| 85 |
f'<div style="text-align: center;font-size:18px">{name} Player</div>'
|
|
@@ -113,7 +113,7 @@ def make_display():
|
|
| 113 |
)
|
| 114 |
with gr.Row():
|
| 115 |
with gr.Column(scale=1):
|
| 116 |
-
red_thoughts, red_dropdown = player_section("Red", "gpt-4o")
|
| 117 |
with gr.Column(scale=2):
|
| 118 |
with gr.Row():
|
| 119 |
message = gr.Markdown(
|
|
|
|
| 3 |
from arena.llm import LLM
|
| 4 |
import gradio as gr
|
| 5 |
|
|
|
|
| 6 |
|
| 7 |
css = "footer{display:none !important}"
|
| 8 |
|
|
|
|
| 79 |
|
| 80 |
|
| 81 |
def player_section(name, default):
|
| 82 |
+
all_model_names = LLM.all_model_names()
|
| 83 |
with gr.Row():
|
| 84 |
gr.Markdown(
|
| 85 |
f'<div style="text-align: center;font-size:18px">{name} Player</div>'
|
|
|
|
| 113 |
)
|
| 114 |
with gr.Row():
|
| 115 |
with gr.Column(scale=1):
|
| 116 |
+
red_thoughts, red_dropdown = player_section("Red", "gpt-4o-mini")
|
| 117 |
with gr.Column(scale=2):
|
| 118 |
with gr.Row():
|
| 119 |
message = gr.Markdown(
|
arena/game.py
CHANGED
|
@@ -1,12 +1,10 @@
|
|
| 1 |
from arena.board import Board, RED, YELLOW, EMPTY, pieces
|
| 2 |
from arena.player import Player
|
| 3 |
-
from dotenv import load_dotenv
|
| 4 |
|
| 5 |
|
| 6 |
class Game:
|
| 7 |
|
| 8 |
def __init__(self, model_red, model_yellow):
|
| 9 |
-
load_dotenv(override=True)
|
| 10 |
self.board = Board()
|
| 11 |
self.players = {
|
| 12 |
RED: Player(model_red, RED),
|
|
|
|
| 1 |
from arena.board import Board, RED, YELLOW, EMPTY, pieces
|
| 2 |
from arena.player import Player
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
class Game:
|
| 6 |
|
| 7 |
def __init__(self, model_red, model_yellow):
|
|
|
|
| 8 |
self.board = Board()
|
| 9 |
self.players = {
|
| 10 |
RED: Player(model_red, RED),
|
arena/llm.py
CHANGED
|
@@ -49,7 +49,6 @@ class LLM(ABC):
|
|
| 49 |
|
| 50 |
def protected_send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
| 51 |
retries = 5
|
| 52 |
-
done = False
|
| 53 |
while retries:
|
| 54 |
retries -= 1
|
| 55 |
try:
|
|
@@ -62,7 +61,13 @@ class LLM(ABC):
|
|
| 62 |
return "{}"
|
| 63 |
|
| 64 |
def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
@classmethod
|
| 68 |
def model_map(cls) -> Dict[str, Type[Self]]:
|
|
@@ -78,7 +83,13 @@ class LLM(ABC):
|
|
| 78 |
|
| 79 |
@classmethod
|
| 80 |
def all_model_names(cls) -> List[str]:
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
@classmethod
|
| 84 |
def create(cls, model_name: str, temperature: float = 0.5) -> Self:
|
|
@@ -117,7 +128,7 @@ class Claude(LLM):
|
|
| 117 |
:return: the response from the AI
|
| 118 |
"""
|
| 119 |
response = self.client.messages.create(
|
| 120 |
-
model=self.
|
| 121 |
max_tokens=max_tokens,
|
| 122 |
temperature=self.temperature,
|
| 123 |
system=system,
|
|
@@ -151,7 +162,7 @@ class GPT(LLM):
|
|
| 151 |
:return: the response from the AI
|
| 152 |
"""
|
| 153 |
response = self.client.chat.completions.create(
|
| 154 |
-
model=self.
|
| 155 |
messages=[
|
| 156 |
{"role": "system", "content": system},
|
| 157 |
{"role": "user", "content": user},
|
|
@@ -185,7 +196,7 @@ class O1(LLM):
|
|
| 185 |
"""
|
| 186 |
message = system + "\n\n" + user
|
| 187 |
response = self.client.chat.completions.create(
|
| 188 |
-
model=self.
|
| 189 |
messages=[
|
| 190 |
{"role": "user", "content": message},
|
| 191 |
],
|
|
@@ -222,7 +233,7 @@ class O3(LLM):
|
|
| 222 |
"""
|
| 223 |
message = system + "\n\n" + user
|
| 224 |
response = self.client.chat.completions.create(
|
| 225 |
-
model=self.
|
| 226 |
messages=[
|
| 227 |
{"role": "user", "content": message},
|
| 228 |
],
|
|
@@ -241,7 +252,7 @@ class Ollama(LLM):
|
|
| 241 |
"""
|
| 242 |
Create a new instance of the OpenAI client
|
| 243 |
"""
|
| 244 |
-
super().__init__(model_name
|
| 245 |
self.client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
|
| 246 |
|
| 247 |
def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
|
@@ -254,7 +265,7 @@ class Ollama(LLM):
|
|
| 254 |
"""
|
| 255 |
|
| 256 |
response = self.client.chat.completions.create(
|
| 257 |
-
model=self.
|
| 258 |
messages=[
|
| 259 |
{"role": "system", "content": system},
|
| 260 |
{"role": "user", "content": user},
|
|
@@ -273,15 +284,13 @@ class DeepSeekAPI(LLM):
|
|
| 273 |
A class to act as an interface to the remote AI, in this case DeepSeek via the OpenAI client
|
| 274 |
"""
|
| 275 |
|
| 276 |
-
model_names = ["deepseek-V3", "deepseek-
|
| 277 |
-
|
| 278 |
-
model_map = {"deepseek-V3": "deepseek-chat", "deepseek-r1": "deepseek-reasoner"}
|
| 279 |
|
| 280 |
def __init__(self, model_name: str, temperature: float):
|
| 281 |
"""
|
| 282 |
Create a new instance of the OpenAI client
|
| 283 |
"""
|
| 284 |
-
super().__init__(
|
| 285 |
deepseek_api_key = os.getenv("DEEPSEEK_API_KEY")
|
| 286 |
self.client = OpenAI(
|
| 287 |
api_key=deepseek_api_key, base_url="https://api.deepseek.com"
|
|
@@ -297,12 +306,11 @@ class DeepSeekAPI(LLM):
|
|
| 297 |
"""
|
| 298 |
|
| 299 |
response = self.client.chat.completions.create(
|
| 300 |
-
model=self.
|
| 301 |
messages=[
|
| 302 |
{"role": "system", "content": system},
|
| 303 |
{"role": "user", "content": user},
|
| 304 |
],
|
| 305 |
-
# response_format={"type": "json_object"},
|
| 306 |
)
|
| 307 |
reply = response.choices[0].message.content
|
| 308 |
return reply
|
|
@@ -319,7 +327,7 @@ class DeepSeekLocal(LLM):
|
|
| 319 |
"""
|
| 320 |
Create a new instance of the OpenAI client
|
| 321 |
"""
|
| 322 |
-
super().__init__(model_name
|
| 323 |
self.client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
|
| 324 |
|
| 325 |
def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
|
@@ -333,7 +341,7 @@ class DeepSeekLocal(LLM):
|
|
| 333 |
system += "\nImportant: avoid overthinking. Think briefly and decisively. The final response must follow the given json format or you forfeit the game. Do not overthink. Respond with json."
|
| 334 |
user += "\nImportant: avoid overthinking. Think briefly and decisively. The final response must follow the given json format or you forfeit the game. Do not overthink. Respond with json."
|
| 335 |
response = self.client.chat.completions.create(
|
| 336 |
-
model=self.
|
| 337 |
messages=[
|
| 338 |
{"role": "system", "content": system},
|
| 339 |
{"role": "user", "content": user},
|
|
@@ -361,7 +369,7 @@ class GroqAPI(LLM):
|
|
| 361 |
"""
|
| 362 |
Create a new instance of the OpenAI client
|
| 363 |
"""
|
| 364 |
-
super().__init__(model_name
|
| 365 |
self.client = Groq()
|
| 366 |
|
| 367 |
def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
|
@@ -373,7 +381,7 @@ class GroqAPI(LLM):
|
|
| 373 |
:return: the response from the AI
|
| 374 |
"""
|
| 375 |
response = self.client.chat.completions.create(
|
| 376 |
-
model=self.
|
| 377 |
messages=[
|
| 378 |
{"role": "system", "content": system},
|
| 379 |
{"role": "user", "content": user},
|
|
|
|
| 49 |
|
| 50 |
def protected_send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
| 51 |
retries = 5
|
|
|
|
| 52 |
while retries:
|
| 53 |
retries -= 1
|
| 54 |
try:
|
|
|
|
| 61 |
return "{}"
|
| 62 |
|
| 63 |
def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
| 64 |
+
raise NotImplementedError
|
| 65 |
+
|
| 66 |
+
def api_model_name(self):
|
| 67 |
+
if " " in self.model_name:
|
| 68 |
+
return self.model_name.split(" ")[0]
|
| 69 |
+
else:
|
| 70 |
+
return self.model_name
|
| 71 |
|
| 72 |
@classmethod
|
| 73 |
def model_map(cls) -> Dict[str, Type[Self]]:
|
|
|
|
| 83 |
|
| 84 |
@classmethod
|
| 85 |
def all_model_names(cls) -> List[str]:
|
| 86 |
+
models = list(cls.model_map().keys())
|
| 87 |
+
allowed = os.getenv("MODELS")
|
| 88 |
+
if allowed:
|
| 89 |
+
allowed_models = allowed.split(",")
|
| 90 |
+
return [model for model in models if model in allowed_models]
|
| 91 |
+
else:
|
| 92 |
+
return models
|
| 93 |
|
| 94 |
@classmethod
|
| 95 |
def create(cls, model_name: str, temperature: float = 0.5) -> Self:
|
|
|
|
| 128 |
:return: the response from the AI
|
| 129 |
"""
|
| 130 |
response = self.client.messages.create(
|
| 131 |
+
model=self.api_model_name(),
|
| 132 |
max_tokens=max_tokens,
|
| 133 |
temperature=self.temperature,
|
| 134 |
system=system,
|
|
|
|
| 162 |
:return: the response from the AI
|
| 163 |
"""
|
| 164 |
response = self.client.chat.completions.create(
|
| 165 |
+
model=self.api_model_name(),
|
| 166 |
messages=[
|
| 167 |
{"role": "system", "content": system},
|
| 168 |
{"role": "user", "content": user},
|
|
|
|
| 196 |
"""
|
| 197 |
message = system + "\n\n" + user
|
| 198 |
response = self.client.chat.completions.create(
|
| 199 |
+
model=self.api_model_name(),
|
| 200 |
messages=[
|
| 201 |
{"role": "user", "content": message},
|
| 202 |
],
|
|
|
|
| 233 |
"""
|
| 234 |
message = system + "\n\n" + user
|
| 235 |
response = self.client.chat.completions.create(
|
| 236 |
+
model=self.api_model_name(),
|
| 237 |
messages=[
|
| 238 |
{"role": "user", "content": message},
|
| 239 |
],
|
|
|
|
| 252 |
"""
|
| 253 |
Create a new instance of the OpenAI client
|
| 254 |
"""
|
| 255 |
+
super().__init__(model_name, temperature)
|
| 256 |
self.client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
|
| 257 |
|
| 258 |
def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
|
|
|
| 265 |
"""
|
| 266 |
|
| 267 |
response = self.client.chat.completions.create(
|
| 268 |
+
model=self.api_model_name(),
|
| 269 |
messages=[
|
| 270 |
{"role": "system", "content": system},
|
| 271 |
{"role": "user", "content": user},
|
|
|
|
| 284 |
A class to act as an interface to the remote AI, in this case DeepSeek via the OpenAI client
|
| 285 |
"""
|
| 286 |
|
| 287 |
+
model_names = ["deepseek-chat V3", "deepseek-reasoner R1"]
|
|
|
|
|
|
|
| 288 |
|
| 289 |
def __init__(self, model_name: str, temperature: float):
|
| 290 |
"""
|
| 291 |
Create a new instance of the OpenAI client
|
| 292 |
"""
|
| 293 |
+
super().__init__(model_name, temperature)
|
| 294 |
deepseek_api_key = os.getenv("DEEPSEEK_API_KEY")
|
| 295 |
self.client = OpenAI(
|
| 296 |
api_key=deepseek_api_key, base_url="https://api.deepseek.com"
|
|
|
|
| 306 |
"""
|
| 307 |
|
| 308 |
response = self.client.chat.completions.create(
|
| 309 |
+
model=self.api_model_name(),
|
| 310 |
messages=[
|
| 311 |
{"role": "system", "content": system},
|
| 312 |
{"role": "user", "content": user},
|
| 313 |
],
|
|
|
|
| 314 |
)
|
| 315 |
reply = response.choices[0].message.content
|
| 316 |
return reply
|
|
|
|
| 327 |
"""
|
| 328 |
Create a new instance of the OpenAI client
|
| 329 |
"""
|
| 330 |
+
super().__init__(model_name, temperature)
|
| 331 |
self.client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
|
| 332 |
|
| 333 |
def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
|
|
|
| 341 |
system += "\nImportant: avoid overthinking. Think briefly and decisively. The final response must follow the given json format or you forfeit the game. Do not overthink. Respond with json."
|
| 342 |
user += "\nImportant: avoid overthinking. Think briefly and decisively. The final response must follow the given json format or you forfeit the game. Do not overthink. Respond with json."
|
| 343 |
response = self.client.chat.completions.create(
|
| 344 |
+
model=self.api_model_name(),
|
| 345 |
messages=[
|
| 346 |
{"role": "system", "content": system},
|
| 347 |
{"role": "user", "content": user},
|
|
|
|
| 369 |
"""
|
| 370 |
Create a new instance of the OpenAI client
|
| 371 |
"""
|
| 372 |
+
super().__init__(model_name, temperature)
|
| 373 |
self.client = Groq()
|
| 374 |
|
| 375 |
def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
|
|
|
|
| 381 |
:return: the response from the AI
|
| 382 |
"""
|
| 383 |
response = self.client.chat.completions.create(
|
| 384 |
+
model=self.api_model_name(),
|
| 385 |
messages=[
|
| 386 |
{"role": "system", "content": system},
|
| 387 |
{"role": "user", "content": user},
|