Spaces:
Runtime error
Runtime error
File size: 9,336 Bytes
13be7b3 355d8e8 8cfa8f7 355d8e8 13be7b3 24cef69 13be7b3 8cfa8f7 9b76bd1 8cfa8f7 9b76bd1 8cfa8f7 9b76bd1 9049d6c 9b76bd1 d8ac6c3 8cfa8f7 9b76bd1 24cef69 355d8e8 24cef69 355d8e8 9049d6c 24cef69 8cfa8f7 24cef69 c984fb7 24cef69 c984fb7 9049d6c f666a76 9049d6c f666a76 9049d6c f666a76 9049d6c f666a76 9049d6c f666a76 9049d6c f666a76 9049d6c 8cfa8f7 9b76bd1 8cfa8f7 e74cf11 9049d6c ab8a52c 96017ad ab8a52c 96017ad c984fb7 96017ad c3cb58a 96017ad ab8a52c 9049d6c 9b76bd1 13be7b3 9049d6c dea5b2b 13be7b3 9049d6c 13be7b3 9b76bd1 13be7b3 9b76bd1 13be7b3 9049d6c 9b76bd1 8cfa8f7 9b76bd1 9049d6c 8cfa8f7 9b76bd1 d1eef11 9049d6c 8cfa8f7 9049d6c 8cfa8f7 9049d6c d8ac6c3 9049d6c d8ac6c3 9049d6c 8cfa8f7 9b76bd1 d1eef11 9049d6c 9b76bd1 9049d6c 88e0a23 d148786 9049d6c c984fb7 9049d6c c984fb7 9049d6c c984fb7 9049d6c 88e0a23 9b76bd1 d1eef11 9049d6c 88e0a23 9b76bd1 d1eef11 8cfa8f7 9049d6c 9b76bd1 9049d6c 16a67ae 9049d6c 8cfa8f7 9049d6c 9b76bd1 8cfa8f7 9049d6c 8cfa8f7 d8ac6c3 8cfa8f7 9049d6c d8ac6c3 9049d6c d8ac6c3 9b76bd1 d8ac6c3 9049d6c 9b76bd1 9049d6c 9b76bd1 13be7b3 9b76bd1 9049d6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import gradio as gr
import requests
import fitz # PyMuPDF
import os
import time
import traceback
from huggingface_hub import snapshot_download
from pleias_rag_interface import RAGWithCitations
from dotenv import load_dotenv
# Debugging setup
DEBUG = True
debug_messages = []
def log_debug(message):
"""Log debug messages and keep last 20 entries"""
if DEBUG:
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
full_message = f"[{timestamp}] {message}"
debug_messages.append(full_message)
print(full_message) # Print to console
# Keep only the last 20 messages
if len(debug_messages) > 20:
debug_messages.pop(0)
return "\n".join(debug_messages)
return ""
# Initialize debug logging
log_debug("Application starting...")
# Download and initialize model
#MODEL_REPO = "PleIAs/Pleias-RAG-350M"
#MODEL_CACHE_DIR = "pleias_model"
#if not os.path.exists(MODEL_CACHE_DIR):
# log_debug("Downloading model...")
# snapshot_download(repo_id=MODEL_REPO, local_dir=MODEL_CACHE_DIR)
# Load environment variables
load_dotenv()
log_debug("Initializing RAG model...")
try:
#rag = RAGWithCitations(model_path_or_name=MODEL_CACHE_DIR)
rag = RAGWithCitations(
model_path_or_name="PleIAs/Pleias-RAG-350M"
)
# model_path_or_name="1b_rag",
# max_tokens=2048, # Maximum tokens to generate (default: 2048)
# temperature=0.0, # Sampling temperature (default: 0.0)
# top_p=0.95, # Nucleus sampling parameter (default: 0.95)
# repetition_penalty=1.0, # Penalty to reduce repetition (default: 1.0)
# trust_remote_code=True, # Whether to trust remote code (default: True)
# hf_token=os.getenv("HF_TOKEN")#, # Required for downloading predefined models
# models_dir=MODEL_CACHE_DIR # Custom directory for downloaded models
# )
# Fix the warnings by properly configuring generation parameters
# if hasattr(rag, "model"):
# Configure tokenizer
# if hasattr(rag, "tokenizer"):
# if rag.tokenizer.pad_token is None:
# rag.tokenizer.pad_token = rag.tokenizer.eos_token
# rag.tokenizer.padding_side = "left" # For batch generation
# Configure model generation settings
# rag.model.config.pad_token_id = rag.tokenizer.pad_token_id
# rag.model.generation_config.pad_token_id = rag.tokenizer.pad_token_id
# Fix the do_sample/top_p warning
# rag.model.generation_config.do_sample = True
# rag.model.generation_config.top_p = 0.95 # Explicitly set to match warning
# Configure attention mask handling
# rag.model.config.use_cache = True
# log_debug("β
Model loaded successfully with configuration:")
# log_debug(f" - Pad token: {rag.tokenizer.pad_token} (ID: {rag.tokenizer.pad_token_id})")
# log_debug(f" - Generation config: {rag.model.generation_config}")
except Exception as e:
log_debug(f"β Model initialization failed: {str(e)}")
raise
## Let's a do simple test from the doc --
# Define query and sources
query = "What is the capital of France?"
log_debug(f"π Test Query: {query}")
sources = [
{
"text": "Paris is the capital and most populous city of France.",
"metadata": {"source": "Geographic Encyclopedia", "reliability": "high"}
},
{
"text": "The Eiffel Tower is located in Paris, France.",
"metadata": {"source": "Travel Guide", "year": 2020}
}
]
log_debug("π Test Sources loaded successfully.")
# Generate a response
try:
log_debug("π§ Test rag model on simple example...")
# rag1 = RAGWithCitations(
# model_path_or_name="PleIAs/Pleias-RAG-350M"
# )
response = rag.generate(query,
sources #,
# do_sample=True, # Enable sampling
# top_p=0.95, # Set top_p for nucleus sampling
# pad_token_id=rag.tokenizer.eos_token_id, # Set pad_token_id to eos_token_id
# attention_mask=None # Ensure attention_mask is passed if needed
)
log_debug("β
Test Answer generated successfully.")
log_debug(response["processed"]["clean_answer"])
except Exception as e:
log_debug(f"β Test Answer generation failed: {str(e)}")
raise
def extract_text_from_pdf_url(url, debug_state):
"""Extract text from PDF with debug logging"""
debug_state = log_debug(f"π Fetching PDF: {url[:60]}...")
try:
start_time = time.time()
response = requests.get(url, timeout=30)
response.raise_for_status()
load_time = time.time() - start_time
debug_state = log_debug(f"β³ PDF downloaded in {load_time:.2f}s (size: {len(response.content)/1024:.1f}KB)")
doc = fitz.open(stream=response.content, filetype="pdf")
text = ""
for page in doc:
text += page.get_text()
debug_state = log_debug(f"β
Extracted {len(text)} characters from PDF")
return text.strip(), debug_state
except Exception as e:
error_msg = f"β PDF Error: {str(e)}"
debug_state = log_debug(error_msg)
return f"[Error loading PDF: {str(e)}]", debug_state
def generate_answer(query, pdf_urls_str, debug_state=""):
"""Main processing function with debug output"""
try:
debug_state = log_debug(f"π New query: {query}")
if not query or not pdf_urls_str:
debug_state = log_debug("β Missing question or PDF URLs")
return "Please provide both inputs", debug_state
pdf_urls = [url.strip() for url in pdf_urls_str.strip().split("\n") if url.strip()]
sources = []
feedback = "### PDF Load Report:\n"
debug_state = log_debug(f"Processing {len(pdf_urls)} PDF URLs...")
for url in pdf_urls:
text, debug_state = extract_text_from_pdf_url(url, debug_state)
if not text.startswith("[Error"):
sources.append({"text": text, "metadata": {"source": url}})
feedback += f"- β
Loaded: {url[:80]}\n"
else:
feedback += f"- β Failed: {url[:80]}\n"
if not sources:
debug_state = log_debug("β No valid PDFs processed")
return feedback + "\nNo valid PDFs processed", debug_state
debug_state = log_debug(f"π§ Generating answer using {len(sources)} sources...")
start_time = time.time()
try:
response = rag.generate(query, sources)
gen_time = time.time() - start_time
debug_state = log_debug(f"β‘ Generation completed in {gen_time:.2f}s")
answer = response["processed"]["clean_answer"]
debug_state = log_debug(f"π‘ Answer preview: {answer[:200]}...")
debug_state = log_debug(f"π οΈ Generated in {gen_time:.2f}s")
return answer, debug_state
except Exception as e:
error_msg = f"β Generation error: {str(e)}"
debug_state = log_debug(error_msg)
debug_state = log_debug(traceback.format_exc())
return feedback + f"\n\nβ Error: {str(e)}", debug_state
except Exception as e:
error_msg = f"β System error: {str(e)}"
debug_state = log_debug(error_msg)
debug_state = log_debug(traceback.format_exc())
return error_msg, debug_state
# Create the Gradio interface
with gr.Blocks(title="Pleias RAG QA", css="""
.debug-console {
font-family: monospace;
max-height: 400px;
overflow-y: auto !important;
background: #f5f5f5;
padding: 10px;
border-radius: 5px;
}
.debug-title {
font-weight: bold;
margin-bottom: 5px;
}
""") as demo:
gr.Markdown("# Retrieval Generation from PDF files with a 350MB Pocket Size Model from Pleias")
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your Question", placeholder="What is this document about?")
pdf_urls = gr.Textbox(lines=5, label="PDF URLs (one per line)",
placeholder="https://example.com/doc1.pdf")
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output = gr.Markdown(label="Model Response")
if DEBUG:
gr.Markdown("### Debug Console", elem_classes=["debug-title"])
debug_console = gr.Textbox(
label="",
interactive=False,
lines=15,
elem_classes=["debug-console"]
)
# Handle submission
submit_btn.click(
fn=generate_answer,
inputs=[question, pdf_urls] + ([debug_console] if DEBUG else []),
outputs=[output, debug_console] if DEBUG else [output],
)
if __name__ == "__main__":
log_debug("π Launching interface...")
demo.launch(
server_port=7860,
server_name="0.0.0.0",
show_error=True,
debug=DEBUG
) |