Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import glob | |
| import json | |
| import math | |
| import os | |
| from dataclasses import dataclass | |
| from typing import List | |
| import traceback | |
| import dateutil | |
| import numpy as np | |
| from huggingface_hub import ModelCard | |
| from src.display.formatting import make_clickable_model | |
| from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, Language, WeightType, ORIGINAL_TASKS | |
| from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, SHOW_INCOMPLETE_EVALS | |
| class EvalResult: | |
| # Also see src.display.utils.AutoEvalColumn for what will be displayed. | |
| eval_name: str # org_model_precision (uid) | |
| full_model: str # org/model (path on hub) | |
| org: str | |
| model: str | |
| results: dict | |
| model_sha: str = "" # commit hash | |
| revision: str = "main" | |
| precision: Precision = Precision.Unknown | |
| model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ... | |
| weight_type: WeightType = WeightType.Original # Original or Adapter | |
| main_language: Language = Language.Unknown | |
| architecture: str = "Unknown" # From config file | |
| license: str = "?" | |
| likes: int = 0 | |
| num_params: int = 0 | |
| date: str = "" # submission date of request file | |
| still_on_hub: bool = True | |
| is_merge: bool = False | |
| flagged: bool = False | |
| status: str = "FINISHED" | |
| tags: list = None | |
| json_filename: str = None | |
| eval_time: float = 0.0 | |
| original_benchmark_average: float = None | |
| hidden: bool = False # Do not show on the leaderboard | |
| num_evals_model_rev: int = 1 | |
| def init_from_json_file(self, json_filepath, is_original=False): | |
| """Inits the result from the specific model result file""" | |
| with open(json_filepath) as fp: | |
| data = json.load(fp) | |
| json_filename = os.path.basename(json_filepath) | |
| # We manage the legacy config format | |
| config = data.get("config_general") | |
| # Precision | |
| precision = Precision.from_str(config.get("model_dtype")) | |
| num_params = round(config.get("model_num_parameters", 0) / 1_000_000_000, 2) | |
| revision = config.get("model_revision", "main") | |
| model_sha = config.get("model_sha", "") | |
| # Get model and org | |
| org_and_model = config.get("model_name") | |
| org_and_model = org_and_model.split("/", 1) | |
| prefix = f"{precision.value.name}" | |
| if revision != "main": | |
| prefix = f"{revision}_{prefix}" | |
| if len(org_and_model) == 1: | |
| org = None | |
| model = org_and_model[0] | |
| result_key = f"{model}_{prefix}" | |
| else: | |
| org = org_and_model[0] | |
| model = org_and_model[1] | |
| result_key = f"{org}_{model}_{prefix}" | |
| full_model = "/".join(org_and_model) | |
| # Extract results available in this file (some results are split in several files) | |
| results = {} | |
| tasks = [(task.value.benchmark, task.value.metric) for task in Tasks] | |
| if is_original: | |
| tasks = ORIGINAL_TASKS | |
| for task in tasks: | |
| benchmark, metric = task | |
| # We skip old mmlu entries | |
| wrong_mmlu_version = False | |
| if benchmark == "hendrycksTest": | |
| for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]: | |
| if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0: | |
| wrong_mmlu_version = True | |
| if wrong_mmlu_version: | |
| continue | |
| # Some truthfulQA values are NaNs | |
| if benchmark == "truthfulqa:mc" and "harness|truthfulqa:mc|0" in data["results"]: | |
| if math.isnan(float(data["results"]["harness|truthfulqa:mc|0"][metric])): | |
| results[benchmark] = 0.0 | |
| continue | |
| def get_metric(v): | |
| res = v.get(metric, None) | |
| if res is None: | |
| res = v.get(metric + ',all', None) | |
| if res is None: | |
| res = v.get(metric + ',None', None) | |
| if res is None: | |
| res = v.get('main_score', None) | |
| return res | |
| # We average all scores of a given metric (mostly for mmlu) | |
| accs = np.array([get_metric(v) for k, v in data["results"].items() if benchmark in k]) | |
| if accs.size == 0 or any([acc is None for acc in accs]): | |
| continue | |
| mean_acc = np.mean(accs) * 100.0 | |
| results[benchmark] = mean_acc | |
| return self( | |
| eval_name=result_key, | |
| full_model=full_model, | |
| org=org, | |
| model=model, | |
| results=results, | |
| model_sha=model_sha, | |
| revision=revision, | |
| precision=precision, | |
| json_filename=json_filename, | |
| eval_time=config.get("total_evaluation_time_seconds", 0.0), | |
| num_params=num_params | |
| ) | |
| def update_with_request_file(self, requests_path): | |
| """Finds the relevant request file for the current model and updates info with it""" | |
| request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name, self.revision) | |
| try: | |
| with open(request_file, "r") as f: | |
| request = json.load(f) | |
| self.model_type = ModelType.from_str(request.get("model_type", "Unknown")) | |
| self.weight_type = WeightType[request.get("weight_type", "Original")] | |
| self.num_params = max(request.get("params", 0), self.num_params) | |
| self.date = request.get("submitted_time", "") | |
| self.architecture = request.get("architectures", "Unknown") | |
| self.status = request.get("status", "FAILED") | |
| self.hidden = request.get("hidden", False) | |
| self.main_language = request.get("main_language", "?") | |
| except Exception as e: | |
| self.status = "FAILED" | |
| print(f"Could not find request file for {self.org}/{self.model}, precision {self.precision.value.name}, revision {self.revision}") | |
| def update_with_dynamic_file_dict(self, file_dict): | |
| self.license = file_dict.get("license", "?") | |
| self.likes = file_dict.get("likes", 0) | |
| self.still_on_hub = file_dict["still_on_hub"] | |
| self.flagged = any("flagged" in tag for tag in file_dict["tags"]) | |
| self.tags = file_dict["tags"] | |
| if 'original_llm_scores' in file_dict: | |
| if len(file_dict['original_llm_scores']) > 0: | |
| if self.precision.value.name in file_dict['original_llm_scores']: | |
| self.original_benchmark_average = file_dict['original_llm_scores'][self.precision.value.name] | |
| else: | |
| self.original_benchmark_average = max(list(file_dict['original_llm_scores'].values())) | |
| def to_dict(self): | |
| """Converts the Eval Result to a dict compatible with our dataframe display""" | |
| average = [] | |
| npm = [] | |
| for task in Tasks: | |
| if task.value.benchmark not in self.results: | |
| continue | |
| res = self.results[task.value.benchmark] | |
| if res is None or np.isnan(res) or not (isinstance(res, float) or isinstance(res, int)): | |
| continue | |
| average.append(res) | |
| npm.append((res-task.value.baseline)*100.0 / (100.0-task.value.baseline)) | |
| average = round(sum(average)/len(average), 2) | |
| npm = round(sum(npm)/len(npm), 2) | |
| data_dict = { | |
| "eval_name": self.eval_name, # not a column, just a save name, | |
| AutoEvalColumn.precision.name: self.precision.value.name, | |
| AutoEvalColumn.model_type.name: self.model_type.value.name, | |
| AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, | |
| AutoEvalColumn.weight_type.name: self.weight_type.value.name, | |
| AutoEvalColumn.architecture.name: self.architecture, | |
| AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.json_filename, revision=self.revision, precision=self.precision.value.name, num_evals_same_model=self.num_evals_model_rev), | |
| AutoEvalColumn.dummy.name: self.full_model, | |
| AutoEvalColumn.revision.name: self.revision, | |
| AutoEvalColumn.average.name: average, | |
| AutoEvalColumn.license.name: self.license, | |
| AutoEvalColumn.likes.name: self.likes, | |
| AutoEvalColumn.params.name: self.num_params, | |
| AutoEvalColumn.still_on_hub.name: self.still_on_hub, | |
| AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False, | |
| AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(), | |
| AutoEvalColumn.flagged.name: self.flagged, | |
| AutoEvalColumn.eval_time.name: self.eval_time, | |
| AutoEvalColumn.npm.name: npm, | |
| AutoEvalColumn.main_language.name: self.main_language | |
| } | |
| for task in Tasks: | |
| if task.value.benchmark in self.results: | |
| data_dict[task.value.col_name] = self.results[task.value.benchmark] | |
| if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS: | |
| data_dict[AutoEvalColumn.original_benchmark_average.name] = self.original_benchmark_average | |
| return data_dict | |
| def get_request_file_for_model(requests_path, model_name, precision, revision): | |
| """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" | |
| request_files = os.path.join( | |
| requests_path, | |
| f"{model_name}_eval_request_*.json", | |
| ) | |
| request_files = glob.glob(request_files) | |
| if revision is None or revision == "": | |
| revision = "main" | |
| # Select correct request file (precision) | |
| request_file = "" | |
| request_files = sorted(request_files, reverse=True) | |
| for tmp_request_file in request_files: | |
| with open(tmp_request_file, "r") as f: | |
| req_content = json.load(f) | |
| if req_content["revision"] is None or req_content["revision"] == "": | |
| req_content["revision"] = "main" | |
| if ( | |
| req_content["status"] in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] | |
| and req_content["precision"] == precision.split(".")[-1] | |
| and req_content["revision"] == revision | |
| ): | |
| request_file = tmp_request_file | |
| return request_file | |
| def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]: | |
| """From the path of the results folder root, extract all needed info for results""" | |
| model_result_filepaths = [] | |
| for root, _, files in os.walk(results_path): | |
| # We should only have json files in model results | |
| if len(files) == 0 or any([not f.endswith(".json") for f in files]): | |
| continue | |
| # Sort the files by date | |
| try: | |
| files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) | |
| except dateutil.parser._parser.ParserError: | |
| files = [files[-1]] | |
| for file in files: | |
| model_result_filepaths.append(os.path.join(root, file)) | |
| with open(dynamic_path) as f: | |
| dynamic_data = json.load(f) | |
| count_model_rev = {} | |
| eval_results = {} | |
| for model_result_filepath in model_result_filepaths: | |
| # Creation of result | |
| eval_result = EvalResult.init_from_json_file(model_result_filepath) | |
| eval_result.update_with_request_file(requests_path) | |
| if eval_result.full_model in dynamic_data: | |
| eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model]) | |
| # Store results of same eval together | |
| eval_name = eval_result.eval_name | |
| if eval_name in eval_results.keys(): | |
| eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) | |
| eval_results[eval_name].json_filename = eval_result.json_filename | |
| else: | |
| eval_results[eval_name] = eval_result | |
| #count model_revision to display precision if duplicate | |
| if eval_result.status in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] and not eval_result.hidden: | |
| model_rev_key = f"{eval_result.full_model}_{eval_result.revision}" | |
| if model_rev_key not in count_model_rev: | |
| count_model_rev[model_rev_key] = 1 | |
| else: | |
| count_model_rev[model_rev_key] += 1 | |
| results = [] | |
| for v in eval_results.values(): | |
| try: | |
| if v.status in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] and not v.hidden: | |
| model_rev_key = f"{v.full_model}_{v.revision}" | |
| v.num_evals_model_rev = count_model_rev[model_rev_key] | |
| v.to_dict() # we test if the dict version is complete | |
| results.append(v) | |
| except KeyError as e: # not all eval values present | |
| continue | |
| return results | |