File size: 6,447 Bytes
b4759b8
 
e7f4764
 
 
 
 
 
b4759b8
e7f4764
 
b4759b8
ec5aa3a
e7f4764
 
 
 
 
 
 
 
ec5aa3a
e7f4764
 
 
 
 
 
 
 
 
 
 
 
 
 
b4759b8
ec5aa3a
e7f4764
 
 
 
 
 
 
 
 
 
8056c5c
 
b4759b8
 
 
 
 
 
 
 
e7f4764
b4759b8
 
 
e7f4764
 
b4759b8
8056c5c
 
ec5aa3a
 
 
 
 
 
 
 
 
3ddcad8
ec5aa3a
3ddcad8
 
ec5aa3a
 
e7f4764
 
854799d
 
e7f4764
 
 
 
 
 
 
 
b4759b8
e7f4764
 
 
b4759b8
ec5aa3a
75e2c43
b4759b8
 
684fca6
 
 
 
 
8056c5c
684fca6
 
 
 
b4759b8
8056c5c
 
e4f1e17
 
8056c5c
e4f1e17
8056c5c
e4f1e17
e8d5265
e4f1e17
 
 
 
8056c5c
e4f1e17
684fca6
 
 
 
 
 
4d23772
 
 
8056c5c
4d23772
e4f1e17
 
8056c5c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
from huggingface_hub import InferenceClient
import re
import edge_tts
import asyncio
from concurrent.futures import ThreadPoolExecutor
import tempfile
from pydub import AudioSegment

# Initialize Hugging Face InferenceClient
client_hf = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

# Define the async function for text-to-speech conversion using Edge TTS
async def text_to_speech_edge(text, language_code):
    voice = {"fr": "fr-FR-RemyMultilingualNeural"}[language_code]
    communicate = edge_tts.Communicate(text, voice)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        tmp_path = tmp_file.name
    await communicate.save(tmp_path)
    return tmp_path

# Helper function to run async functions from within Streamlit (synchronous context)
def run_in_threadpool(func, *args, **kwargs):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    future = asyncio.ensure_future(func(*args, **kwargs))
    return loop.run_until_complete(future)

def concatenate_audio(paths):
    combined = AudioSegment.empty()
    for path in paths:
        audio = AudioSegment.from_mp3(path)
        combined += audio
    combined_path = tempfile.mktemp(suffix=".mp3")
    combined.export(combined_path, format="mp3")
    return combined_path

# Modified function to work with async Edge TTS
def dictee_to_audio_segmented(dictee):
    sentences = segmenter_texte(dictee)
    audio_urls = []
    with ThreadPoolExecutor() as executor:
        for sentence in sentences:
            processed_sentence = replace_punctuation(sentence)
            audio_path = executor.submit(run_in_threadpool, text_to_speech_edge, processed_sentence, "fr").result()
            audio_urls.append(audio_path)
    return audio_urls

def generer_dictee(classe, longueur):
    prompt = f"Créer une dictée pour la classe {classe} d'une longueur d'environ {longueur} mots. Il est important de créer le texte uniquement de la dictée et de ne pas ajouter de consignes ou d'indications supplémentaires."
    generate_kwargs = {
        "temperature": 0.7,
        "max_new_tokens": 1000,
        "top_p": 0.95,
        "repetition_penalty": 1.2,
        "do_sample": True,
    }
    formatted_prompt = f"<s>[INST] {prompt} [/INST]"
    stream = client_hf.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    dictee = ""
    for response in stream:
        dictee += response.token.text
    dictee = dictee.replace("</s>", "").strip()
    return dictee

def correction_dictee(dictee_generated, dictee_user):
    prompt = f"Voici une dictée crée: {dictee_generated} | Voici la dictée faite par l'utilisateur : {dictee_user} - Corrige la dictée en donnant les explications, utilise les syntax du markdown pour une meilleur comprehesion de la correction. Il est important de comparer la dictée de l'utilisateur avec uniquement celle crée."
    generate_kwargs = {
        "temperature": 0.7,
        "max_new_tokens": 2000,  # Ajustez selon la longueur attendue de la correction
        "top_p": 0.95,
        "repetition_penalty": 1.2,
        "do_sample": True,
    }
    formatted_prompt = f"<s>[INST] {prompt} [/INST]"
    stream = client_hf.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    correction = ""
    for response in stream:
        correction += response.token.text
    correction = correction.replace("</s>", "").strip()
    return correction

def replace_punctuation(text):
    replacements = {
        ".": " point.",
        ",": " virgule,",
        ";": " point-virgule;",
        ":": " deux-points:",
        "!": " point d'exclamation!",
        "?": " point d'interrogation?",
    }
    for key, value in replacements.items():
        text = text.replace(key, value)
    return text

def segmenter_texte(texte):
    sentences = re.split(r'(?<=[.!?]) +', texte)
    return sentences

# Streamlit App Interface
st.set_page_config(layout="wide")
st.title('Générateur de Dictée')

# Create a form for the user to fill out
with st.form("dictation_form"):
    mode = st.radio("Mode:", ["S'entrainer: Vous aurez uniquement les audios suivi d'une correction par IA (Pour 1 seul personne)", "Entrainer:  Vous aurez uniquement le texte de la dictée pour entrainer quelqu'un d'autre (Pour 2 ou + personnes)"])
    classe = st.selectbox("Classe", ["CP", "CE1", "CE2", "CM1", "CM2", "6ème", "5ème", "4ème", "3ème", "Seconde", "Premiere", "Terminale"], index=2)
    longueur = st.slider("Longueur de la dictée (nombre de mots)", 50, 500, 200)

    # Submit button for the form
    submitted = st.form_submit_button("Générer la Dictée")

if submitted:
    with st.spinner("Génération de la dictée en cours..."):
        dictee = generer_dictee(classe, longueur)
        if mode == "S'entrainer: Vous aurez uniquement les audios suivi d'une correction par IA (Pour 1 seul personne)":
            audio_urls = dictee_to_audio_segmented(dictee)
            concatenated_audio_path = concatenate_audio(audio_urls)

            col1, col2 = st.columns(2)

            with col1:
                st.audio(concatenated_audio_path, format='audio/wav', start_time=0)
                with st.expander("Phrases de la Dictée"):
                    for idx, url in enumerate(audio_urls, start=1):
                        st.markdown(f"**Phrase {idx}:**")
                        st.audio(url, format='audio/wav')

            with col2:
                # Create a new form for the user's dictation
                with st.form("user_dictation_form"):
                    dictee_user = st.text_input("Écrivez la dictée ici:")
                    submitted_user_dictation = st.form_submit_button("Correction")

                if submitted_user_dictation:
                    st.session_state.dictee_user = dictee_user

                if 'dictee_user' in st.session_state:
                    with st.spinner("Génération de la correction en cours..."):
                        correction = correction_dictee(dictee, st.session_state.dictee_user)
                        st.markdown("Voici la correction :")
                        st.markdown(correction)

        elif mode == "Entrainer:  Vous aurez uniquement le texte de la dictée pour entrainer quelqu'un d'autre (Pour 2 ou + personnes)":
            st.text_area("Voici votre dictée :", dictee, height=300)