File size: 6,381 Bytes
b4759b8
 
e7f4764
 
 
 
 
 
b4759b8
e7f4764
 
b4759b8
ec5aa3a
e7f4764
 
 
 
 
 
 
 
ec5aa3a
e7f4764
 
 
 
 
 
 
 
 
 
 
 
 
 
b4759b8
ec5aa3a
e7f4764
 
 
 
 
 
 
 
 
 
 
c755bb6
b4759b8
 
 
 
 
 
 
 
e7f4764
b4759b8
 
 
e7f4764
 
b4759b8
b6ca4c6
 
ec5aa3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7f4764
 
854799d
 
e7f4764
 
 
 
 
 
 
 
b4759b8
e7f4764
 
 
b4759b8
ec5aa3a
 
 
 
 
75e2c43
b4759b8
 
cca4ee6
ec5aa3a
b4759b8
 
ec5aa3a
 
 
b4759b8
 
ec5aa3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import streamlit as st
from huggingface_hub import InferenceClient
import re
import edge_tts
import asyncio
from concurrent.futures import ThreadPoolExecutor
import tempfile
from pydub import AudioSegment

# Initialize Hugging Face InferenceClient
client_hf = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

# Define the async function for text-to-speech conversion using Edge TTS
async def text_to_speech_edge(text, language_code):
    voice = {"fr": "fr-FR-RemyMultilingualNeural"}[language_code]
    communicate = edge_tts.Communicate(text, voice)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        tmp_path = tmp_file.name
    await communicate.save(tmp_path)
    return tmp_path

# Helper function to run async functions from within Streamlit (synchronous context)
def run_in_threadpool(func, *args, **kwargs):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    future = asyncio.ensure_future(func(*args, **kwargs))
    return loop.run_until_complete(future)

def concatenate_audio(paths):
    combined = AudioSegment.empty()
    for path in paths:
        audio = AudioSegment.from_mp3(path)
        combined += audio
    combined_path = tempfile.mktemp(suffix=".mp3")
    combined.export(combined_path, format="mp3")
    return combined_path

# Modified function to work with async Edge TTS
def dictee_to_audio_segmented(dictee):
    sentences = segmenter_texte(dictee)
    audio_urls = []
    with ThreadPoolExecutor() as executor:
        for sentence in sentences:
            processed_sentence = replace_punctuation(sentence)
            audio_path = executor.submit(run_in_threadpool, text_to_speech_edge, processed_sentence, "fr").result()
            audio_urls.append(audio_path)
    return audio_urls

def generer_dictee(classe, longueur):
    prompt = f"Créer une dictée pour la classe {classe} d'une longueur d'environ {longueur} mots. Il est important de créer le texte uniquement de la dictée et de ne pas ajouter de consignes ou d'indications supplémentaires."
    generate_kwargs = {
        "temperature": 0.7,
        "max_new_tokens": 1000,
        "top_p": 0.95,
        "repetition_penalty": 1.2,
        "do_sample": True,
    }
    formatted_prompt = f"<s>[INST] {prompt} [/INST]"
    stream = client_hf.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    dictee = ""
    for response in stream:
        dictee += response.token.text
    dictee = dictee.replace("</s>", "").strip()
    return dictee

def correction_dictee(dictee_utilisateur):
    prompt = f"Voici une dictée crée: {st.session_state.dictée} | Voici la dictée faite par l'utilisateur : {dictee_utilisateur} - Corrige la dictée en donnant les explications, utilise les syntax du markdown pour une meilleur comprehesion de la correction."
    generate_kwargs = {
        "temperature": 0.7,
        "max_new_tokens": 2000,  # Ajustez selon la longueur attendue de la correction
        "top_p": 0.95,
        "repetition_penalty": 1.2,
        "do_sample": True,
    }
    formatted_prompt = f"<s>[INST] {prompt} [/INST]"
    stream = client_hf.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    texte_ameliore = ""
    for response in stream:
        texte_ameliore += response.token.text
    texte_ameliore = texte_ameliore.replace("</s>", "").strip()
    return correction

def replace_punctuation(text):
    replacements = {
        ".": " point.",
        ",": " virgule,",
        ";": " point-virgule;",
        ":": " deux-points:",
        "!": " point d'exclamation!",
        "?": " point d'interrogation?",
    }
    for key, value in replacements.items():
        text = text.replace(key, value)
    return text

def segmenter_texte(texte):
    sentences = re.split(r'(?<=[.!?]) +', texte)
    return sentences

# Stocker la dictée dans une variable de session pour qu'elle persiste
if 'dictée' not in st.session_state:
    st.session_state.dictée = None

# Streamlit App Interface
st.set_page_config(layout="wide")
st.title('Générateur de Dictée')

with st.expander("Paramètres de la dictée", expanded=True):
    mode = st.radio("Mode:", ["S'entrainer: Vous aurez uniquement les audios suivi d'une correction par IA (Pour 1 seul personne)", "Entrainer:  Vous aurez uniquement le texte de la dictée pour entrainer quelqu'un d'autre (Pour 2 ou + personnes)"])
    classe = st.selectbox("Classe", ["CP", "CE1", "CE2", "CM1", "CM2", "6ème", "5ème", "4ème", "3ème", "Seconde", "Premiere", "Terminale"], index=2)
    longueur = st.slider("Longueur de la dictée (nombre de mots)", 50, 500, 200)
    bouton_generer = st.button('Générer la Dictée')

if bouton_generer:
    with st.spinner("Génération de la dictée en cours..."):
        dictee = generer_dictee(classe, longueur)
        st.session_state.dictée = dictee

if st.session_state.dictée:
    # Afficher la dictée ou les audios en fonction du mode
    if mode == "S'entrainer: Vous aurez uniquement les audios suivi d'une correction par IA (Pour 1 seul personne)":
        audio_urls = dictee_to_audio_segmented(st.session_state.dictée)
        concatenated_audio_path = concatenate_audio(audio_urls)

        col1, col2 = st.columns(2)

        with col1:
            st.audio(concatenated_audio_path, format='audio/wav', start_time=0)
            with st.expander("Phrases de la Dictée"):
                for idx, url in enumerate(audio_urls, start=1):
                    st.markdown(f"**Phrase {idx}:**")
                    st.audio(url, format='audio/wav')

        with col2:
            dictee_utilisateur = st.text_input("Écrivez la dictée ici:")
            if st.button('Correction'):
                with st.spinner("Génération de la correction en cours..."):
                    correction = correction_dictee(st.session_state.dictée, dictee_utilisateur)
                    st.text_area("Voici la correction :", correction, height=500)

    elif mode == "Entrainer:  Vous aurez uniquement le texte de la dictée pour entrainer quelqu'un d'autre (Pour 2 ou + personnes)":
        st.text_area("Voici votre dictée :", st.session_state.dictée, height=300)

    # Ajouter un bouton "Retour" pour réinitialiser la session
    if st.button('Retour'):
        st.session_state.dictée = None