Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
import time
|
4 |
import re
|
5 |
import edge_tts
|
6 |
import asyncio
|
@@ -11,7 +10,6 @@ from pydub import AudioSegment
|
|
11 |
# Initialize Hugging Face InferenceClient
|
12 |
client_hf = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
13 |
|
14 |
-
# Define the async function for text-to-speech conversion using Edge TTS
|
15 |
async def text_to_speech_edge(text, language_code):
|
16 |
voice = {"fr": "fr-FR-RemyMultilingualNeural"}[language_code]
|
17 |
communicate = edge_tts.Communicate(text, voice)
|
@@ -20,7 +18,6 @@ async def text_to_speech_edge(text, language_code):
|
|
20 |
await communicate.save(tmp_path)
|
21 |
return tmp_path
|
22 |
|
23 |
-
# Helper function to run async functions from within Streamlit (synchronous context)
|
24 |
def run_in_threadpool(func, *args, **kwargs):
|
25 |
loop = asyncio.new_event_loop()
|
26 |
asyncio.set_event_loop(loop)
|
@@ -36,7 +33,6 @@ def concatenate_audio(paths):
|
|
36 |
combined.export(combined_path, format="mp3")
|
37 |
return combined_path
|
38 |
|
39 |
-
# Modified function to work with async Edge TTS
|
40 |
def dictee_to_audio_segmented(dictee):
|
41 |
sentences = segmenter_texte(dictee)
|
42 |
audio_urls = []
|
@@ -48,7 +44,7 @@ def dictee_to_audio_segmented(dictee):
|
|
48 |
return audio_urls
|
49 |
|
50 |
def generer_dictee(classe, longueur):
|
51 |
-
prompt = f"Créer une dictée pour la classe {classe} d'une longueur d'environ {longueur} mots.
|
52 |
generate_kwargs = {
|
53 |
"temperature": 0.7,
|
54 |
"max_new_tokens": 1000,
|
@@ -64,24 +60,6 @@ def generer_dictee(classe, longueur):
|
|
64 |
dictee = dictee.replace("</s>", "").strip()
|
65 |
return dictee
|
66 |
|
67 |
-
def correction_dictee(dictee, dictee_utilisateur):
|
68 |
-
prompt = f"Voici une dictée crée: {dictee} | Voici la dictée faite par l'utilisateur : {dictee_utilisateur} - Corrige la dictée en donnant les explications, utilise les syntax du markdown pour une meilleur comprehesion de la correction."
|
69 |
-
generate_kwargs = {
|
70 |
-
"temperature": 0.7,
|
71 |
-
"max_new_tokens": 2000, # Ajustez selon la longueur attendue de la correction
|
72 |
-
"top_p": 0.95,
|
73 |
-
"repetition_penalty": 1.2,
|
74 |
-
"do_sample": True,
|
75 |
-
}
|
76 |
-
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
|
77 |
-
stream = client_hf.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
78 |
-
texte_ameliore = ""
|
79 |
-
for response in stream:
|
80 |
-
texte_ameliore += response.token.text
|
81 |
-
texte_ameliore = texte_ameliore.replace("</s>", "").strip()
|
82 |
-
return correction
|
83 |
-
|
84 |
-
|
85 |
def replace_punctuation(text):
|
86 |
replacements = {
|
87 |
".": " point.",
|
@@ -99,37 +77,30 @@ def segmenter_texte(texte):
|
|
99 |
sentences = re.split(r'(?<=[.!?]) +', texte)
|
100 |
return sentences
|
101 |
|
102 |
-
# Streamlit App Interface
|
103 |
st.set_page_config(layout="wide")
|
104 |
st.title('Générateur de Dictée')
|
105 |
|
106 |
with st.expander("Paramètres de la dictée", expanded=True):
|
107 |
-
mode = st.radio("Mode:", ["S'entrainer
|
108 |
classe = st.selectbox("Classe", ["CP", "CE1", "CE2", "CM1", "CM2", "6ème", "5ème", "4ème", "3ème", "Seconde", "Premiere", "Terminale"], index=2)
|
109 |
longueur = st.slider("Longueur de la dictée (nombre de mots)", 50, 500, 200)
|
110 |
|
111 |
if st.button('Générer la Dictée'):
|
112 |
with st.spinner("Génération de la dictée en cours..."):
|
113 |
dictee = generer_dictee(classe, longueur)
|
114 |
-
if mode == "S'entrainer
|
115 |
audio_urls = dictee_to_audio_segmented(dictee)
|
116 |
concatenated_audio_path = concatenate_audio(audio_urls)
|
117 |
-
|
118 |
col1, col2 = st.columns(2)
|
119 |
-
|
120 |
with col1:
|
121 |
-
st.audio(concatenated_audio_path, format='audio/
|
122 |
-
with st.expander("Phrases de la Dictée"):
|
123 |
-
for idx, url in enumerate(audio_urls, start=1):
|
124 |
-
st.markdown(f"**Phrase {idx}:**")
|
125 |
-
st.audio(url, format='audio/wav')
|
126 |
-
|
127 |
with col2:
|
128 |
-
|
|
|
129 |
if st.button('Correction'):
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
|
134 |
-
elif mode == "Entrainer
|
135 |
st.text_area("Voici votre dictée :", dictee, height=300)
|
|
|
1 |
import streamlit as st
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
import re
|
4 |
import edge_tts
|
5 |
import asyncio
|
|
|
10 |
# Initialize Hugging Face InferenceClient
|
11 |
client_hf = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
12 |
|
|
|
13 |
async def text_to_speech_edge(text, language_code):
|
14 |
voice = {"fr": "fr-FR-RemyMultilingualNeural"}[language_code]
|
15 |
communicate = edge_tts.Communicate(text, voice)
|
|
|
18 |
await communicate.save(tmp_path)
|
19 |
return tmp_path
|
20 |
|
|
|
21 |
def run_in_threadpool(func, *args, **kwargs):
|
22 |
loop = asyncio.new_event_loop()
|
23 |
asyncio.set_event_loop(loop)
|
|
|
33 |
combined.export(combined_path, format="mp3")
|
34 |
return combined_path
|
35 |
|
|
|
36 |
def dictee_to_audio_segmented(dictee):
|
37 |
sentences = segmenter_texte(dictee)
|
38 |
audio_urls = []
|
|
|
44 |
return audio_urls
|
45 |
|
46 |
def generer_dictee(classe, longueur):
|
47 |
+
prompt = f"Créer une dictée pour la classe {classe} d'une longueur d'environ {longueur} mots."
|
48 |
generate_kwargs = {
|
49 |
"temperature": 0.7,
|
50 |
"max_new_tokens": 1000,
|
|
|
60 |
dictee = dictee.replace("</s>", "").strip()
|
61 |
return dictee
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def replace_punctuation(text):
|
64 |
replacements = {
|
65 |
".": " point.",
|
|
|
77 |
sentences = re.split(r'(?<=[.!?]) +', texte)
|
78 |
return sentences
|
79 |
|
|
|
80 |
st.set_page_config(layout="wide")
|
81 |
st.title('Générateur de Dictée')
|
82 |
|
83 |
with st.expander("Paramètres de la dictée", expanded=True):
|
84 |
+
mode = st.radio("Mode:", ["S'entrainer", "Entrainer"])
|
85 |
classe = st.selectbox("Classe", ["CP", "CE1", "CE2", "CM1", "CM2", "6ème", "5ème", "4ème", "3ème", "Seconde", "Premiere", "Terminale"], index=2)
|
86 |
longueur = st.slider("Longueur de la dictée (nombre de mots)", 50, 500, 200)
|
87 |
|
88 |
if st.button('Générer la Dictée'):
|
89 |
with st.spinner("Génération de la dictée en cours..."):
|
90 |
dictee = generer_dictee(classe, longueur)
|
91 |
+
if mode == "S'entrainer":
|
92 |
audio_urls = dictee_to_audio_segmented(dictee)
|
93 |
concatenated_audio_path = concatenate_audio(audio_urls)
|
|
|
94 |
col1, col2 = st.columns(2)
|
|
|
95 |
with col1:
|
96 |
+
st.audio(concatenated_audio_path, format='audio/mp3')
|
|
|
|
|
|
|
|
|
|
|
97 |
with col2:
|
98 |
+
# Utiliser st.session_state pour conserver la saisie de l'utilisateur
|
99 |
+
user_input = st.text_area("Écrivez la dictée ici:", value=st.session_state.get('user_input', ''), height=300, key='user_input')
|
100 |
if st.button('Correction'):
|
101 |
+
st.write("Dictée originale:")
|
102 |
+
st.text(dictee)
|
103 |
+
# Ajouter ici la logique de comparaison/correction détaillée si nécessaire
|
104 |
|
105 |
+
elif mode == "Entrainer":
|
106 |
st.text_area("Voici votre dictée :", dictee, height=300)
|