Spaces:
Runtime error
Runtime error
Cache model and tokenizer and lock dependencies
Browse files- app.py +19 -3
- requirements.txt +7 -7
app.py
CHANGED
|
@@ -2,10 +2,10 @@ import os
|
|
| 2 |
import sys
|
| 3 |
|
| 4 |
import streamlit as st
|
|
|
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
from transformers import AutoTokenizer
|
| 7 |
|
| 8 |
-
|
| 9 |
LOCAL_PATH = snapshot_download("flax-community/clip-spanish")
|
| 10 |
sys.path.append(LOCAL_PATH)
|
| 11 |
|
|
@@ -15,16 +15,24 @@ from test_on_image import run_inference
|
|
| 15 |
|
| 16 |
def save_file_to_disk(uplaoded_file):
|
| 17 |
temp_file = os.path.join("/tmp", uplaoded_file.name)
|
| 18 |
-
with open(temp_file,"wb") as f:
|
| 19 |
f.write(uploaded_file.getbuffer())
|
| 20 |
return temp_file
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def load_tokenizer_and_model():
|
| 23 |
# load the saved model
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-cased")
|
| 25 |
model = FlaxHybridCLIP.from_pretrained(LOCAL_PATH)
|
| 26 |
return tokenizer, model
|
| 27 |
|
|
|
|
| 28 |
tokenizer, model = load_tokenizer_and_model()
|
| 29 |
|
| 30 |
st.title("Image-Caption Matching")
|
|
@@ -36,7 +44,15 @@ if uploaded_file is not None and text_input:
|
|
| 36 |
try:
|
| 37 |
local_image_path = save_file_to_disk(uploaded_file)
|
| 38 |
score = run_inference(local_image_path, text_input, model, tokenizer).tolist()
|
| 39 |
-
st.image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
st.write(f"## Score: {score:.2f}")
|
| 41 |
finally:
|
| 42 |
if local_image_path:
|
|
|
|
| 2 |
import sys
|
| 3 |
|
| 4 |
import streamlit as st
|
| 5 |
+
import transformers
|
| 6 |
from huggingface_hub import snapshot_download
|
| 7 |
from transformers import AutoTokenizer
|
| 8 |
|
|
|
|
| 9 |
LOCAL_PATH = snapshot_download("flax-community/clip-spanish")
|
| 10 |
sys.path.append(LOCAL_PATH)
|
| 11 |
|
|
|
|
| 15 |
|
| 16 |
def save_file_to_disk(uplaoded_file):
|
| 17 |
temp_file = os.path.join("/tmp", uplaoded_file.name)
|
| 18 |
+
with open(temp_file, "wb") as f:
|
| 19 |
f.write(uploaded_file.getbuffer())
|
| 20 |
return temp_file
|
| 21 |
|
| 22 |
+
|
| 23 |
+
@st.cache(
|
| 24 |
+
hash_funcs={
|
| 25 |
+
transformers.models.bert.tokenization_bert_fast.BertTokenizerFast: id,
|
| 26 |
+
FlaxHybridCLIP: id,
|
| 27 |
+
}
|
| 28 |
+
)
|
| 29 |
def load_tokenizer_and_model():
|
| 30 |
# load the saved model
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-cased")
|
| 32 |
model = FlaxHybridCLIP.from_pretrained(LOCAL_PATH)
|
| 33 |
return tokenizer, model
|
| 34 |
|
| 35 |
+
|
| 36 |
tokenizer, model = load_tokenizer_and_model()
|
| 37 |
|
| 38 |
st.title("Image-Caption Matching")
|
|
|
|
| 44 |
try:
|
| 45 |
local_image_path = save_file_to_disk(uploaded_file)
|
| 46 |
score = run_inference(local_image_path, text_input, model, tokenizer).tolist()
|
| 47 |
+
st.image(
|
| 48 |
+
uploaded_file,
|
| 49 |
+
caption=text_input,
|
| 50 |
+
width=None,
|
| 51 |
+
use_column_width=None,
|
| 52 |
+
clamp=False,
|
| 53 |
+
channels="RGB",
|
| 54 |
+
output_format="auto",
|
| 55 |
+
)
|
| 56 |
st.write(f"## Score: {score:.2f}")
|
| 57 |
finally:
|
| 58 |
if local_image_path:
|
requirements.txt
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
flax
|
| 2 |
-
|
| 3 |
-
jax
|
| 4 |
streamlit==0.84.1
|
| 5 |
-
torch
|
| 6 |
-
torchvision
|
| 7 |
-
transformers
|
| 8 |
-
watchdog
|
|
|
|
| 1 |
+
flax==0.3.4
|
| 2 |
+
huggingface-hub==0.0.12
|
| 3 |
+
jax==0.2.17
|
| 4 |
streamlit==0.84.1
|
| 5 |
+
torch==1.9.0
|
| 6 |
+
torchvision==0.10.0
|
| 7 |
+
transformers==4.8.2
|
| 8 |
+
watchdog==2.1.3
|