edwardthefma commited on
Commit
d816f20
Β·
verified Β·
1 Parent(s): 41196de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +234 -63
app.py CHANGED
@@ -1,64 +1,235 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+ from datetime import datetime
4
+ import matplotlib.pyplot as plt
5
+ import io
6
+ import base64
7
+ from langdetect import detect
8
+ import qrcode
9
+ from wordcloud import WordCloud
10
+ import nltk
11
+ from nltk.tokenize import sent_tokenize
12
+ from better_profanity import profanity
13
+ import tempfile
14
+ import os
15
+
16
+ # Download NLTK data
17
+ nltk.download('punkt', quiet=True)
18
+
19
+ # Model options
20
+ models = {
21
+ "DistilBERT": "distilbert-base-uncased-finetuned-sst-2-english",
22
+ "Twitter RoBERTa": "cardiffnlp/twitter-roberta-base-sentiment-latest"
23
+ }
24
+ analyzer = None
25
+ history = []
26
+ sentiment_scores = []
27
+ feedback_log = []
28
+
29
+ # Load the selected or custom model
30
+ def load_model(model_name, custom_model_path=None):
31
+ global analyzer
32
+ if custom_model_path:
33
+ analyzer = pipeline("sentiment-analysis", model=custom_model_path)
34
+ return f"Loaded custom model from {custom_model_path}"
35
+ analyzer = pipeline("sentiment-analysis", model=models[model_name])
36
+ return f"Loaded {model_name} model."
37
+
38
+ # Highlight words
39
+ def highlight_words(text, sentiment, pos_words, neg_words):
40
+ words = text.split()
41
+ highlighted = []
42
+ pos_list = pos_words.split(",") if pos_words else ["love", "great", "happy", "awesome", "good"]
43
+ neg_list = neg_words.split(",") if neg_words else ["hate", "bad", "terrible", "awful", "sad"]
44
+ for word in words:
45
+ if sentiment == "POSITIVE" and word.lower() in [w.strip().lower() for w in pos_list]:
46
+ highlighted.append(f"**{word}**")
47
+ elif sentiment == "NEGATIVE" and word.lower() in [w.strip().lower() for w in neg_list]:
48
+ highlighted.append(f"**{word}**")
49
+ else:
50
+ highlighted.append(word)
51
+ return " ".join(highlighted)
52
+
53
+ # Sentiment analysis with context
54
+ def analyze_sentiment(text, model_name, pos_words, neg_words, intensity, custom_model_path=None, source="manual", compare_text=None):
55
+ if not text or not text.strip():
56
+ return "Error: Please enter some text.", "", "", None, None, "", None, ""
57
+ try:
58
+ if analyzer is None:
59
+ load_model(model_name, custom_model_path)
60
+
61
+ # Language and profanity check
62
+ lang = detect(text)
63
+ lang_note = " (Warning: Text may not be in English)" if lang != "en" else ""
64
+ profanity_note = " (Warning: Inappropriate language detected)" if profanity.contains_profanity(text) else ""
65
+
66
+ # Contextual analysis
67
+ sentences = sent_tokenize(text)
68
+ results = []
69
+ for sent in sentences:
70
+ result = analyzer(sent)[0]
71
+ label, score = result['label'], result['score']
72
+ if score < intensity:
73
+ label = "NEUTRAL"
74
+ results.append(f"{sent} -> {label} ({score:.2f})")
75
+ combined_result = analyzer(text)[0]
76
+ label, score = combined_result['label'], combined_result['score']
77
+ if score < intensity:
78
+ label, emoji = "NEUTRAL", "😐"
79
+ else:
80
+ emoji = "😊" if "POSITIVE" in label.upper() else "😞" if "NEGATIVE" in label.upper() else "😐"
81
+ confidence_note = " (Low confidence)" if score < 0.7 else ""
82
+ sentiment_result = f"Overall: {label} {emoji} (Confidence: {score:.2f}{confidence_note}{lang_note}{profanity_note})\n" + "\n".join(results)
83
+ highlighted_text = highlight_words(text, label, pos_words, neg_words)
84
+
85
+ # History and scores
86
+ timestamp = datetime.now().strftime('%H:%M:%S')
87
+ history.append(f"[{timestamp}] {source}: {text} -> {sentiment_result.splitlines()[0]}")
88
+ sentiment_scores.append((timestamp, 1 if "POSITIVE" in label.upper() else -1 if "NEGATIVE" in label.upper() else 0))
89
+ history_str = "\n".join([h for h in history[-5:]])
90
+
91
+ # Visuals
92
+ trend_img = generate_timeline()
93
+ wordcloud_img = generate_wordcloud(text)
94
+ qr_img = generate_qr(f"https://example.com/share?text={text}&result={sentiment_result.splitlines()[0].replace(' ', '+')}")
95
+
96
+ # Comparative analysis
97
+ compare_result = ""
98
+ if compare_text:
99
+ comp_result = analyzer(compare_text)[0]
100
+ comp_label, comp_score = comp_result['label'], comp_result['score']
101
+ comp_emoji = "😊" if "POSITIVE" in comp_label.upper() else "😞" if "NEGATIVE" in comp_label.upper() else "😐"
102
+ compare_result = f"Comparison: {comp_label} {comp_emoji} (Confidence: {comp_score:.2f})"
103
+
104
+ return sentiment_result, highlighted_text, history_str, trend_img, wordcloud_img, qr_img, compare_result, ""
105
+ except Exception as e:
106
+ return f"Error: {str(e)}", "", "", None, None, "", "", ""
107
+
108
+ # Fetch X post (simulated)
109
+ def fetch_x_post(x_url, model_name, pos_words, neg_words, intensity, custom_model_path):
110
+ sample_text = "Sample X post from " + x_url
111
+ return analyze_sentiment(sample_text, model_name, pos_words, neg_words, intensity, custom_model_path, source="X post")
112
+
113
+ # Generate timeline
114
+ def generate_timeline():
115
+ if not sentiment_scores:
116
+ return None
117
+ times, scores = zip(*sentiment_scores[-10:])
118
+ plt.figure(figsize=(6, 3))
119
+ plt.plot(times, scores, marker='o', linestyle='-', color='b')
120
+ plt.title("Sentiment Timeline")
121
+ plt.xlabel("Time")
122
+ plt.ylabel("Sentiment")
123
+ plt.ylim(-1.5, 1.5)
124
+ plt.xticks(rotation=45)
125
+ plt.tight_layout()
126
+ buf = io.BytesIO()
127
+ plt.savefig(buf, format="png")
128
+ buf.seek(0)
129
+ img_str = "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode()
130
+ plt.close()
131
+ return img_str
132
+
133
+ # Generate word cloud
134
+ def generate_wordcloud(text):
135
+ wordcloud = WordCloud(width=400, height=200, background_color="white").generate(text)
136
+ buf = io.BytesIO()
137
+ wordcloud.to_image().save(buf, format="PNG")
138
+ buf.seek(0)
139
+ img_str = "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode()
140
+ return img_str
141
+
142
+ # Generate QR code
143
+ def generate_qr(url):
144
+ qr = qrcode.QRCode(version=1, box_size=10, border=4)
145
+ qr.add_data(url)
146
+ qr.make(fit=True)
147
+ img = qr.make_image(fill="black", back_color="white")
148
+ buf = io.BytesIO()
149
+ img.save(buf, format="PNG")
150
+ buf.seek(0)
151
+ img_str = "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode()
152
+ return img_str
153
+
154
+ # Export history with proper file handling
155
+ def export_history():
156
+ if not history:
157
+ return None
158
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w") as temp_file:
159
+ temp_file.write("\n".join(history))
160
+ temp_path = temp_file.name
161
+ return temp_path
162
+
163
+ # Log feedback
164
+ def log_feedback(rating):
165
+ feedback_log.append(f"[{datetime.now().strftime('%H:%M:%S')}] Rating: {rating}/5")
166
+ return f"Feedback received! ({len(feedback_log)} total)"
167
+
168
+ # Theme toggle function
169
+ def toggle_theme(light_mode):
170
+ return "Theme switched to " + ("Light" if light_mode else "Dark") + ". Please refresh the page to apply."
171
+
172
+ # Gradio interface
173
+ with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
174
+ gr.Markdown("# Sentiment Analysis App")
175
+ gr.Markdown("Next-level sentiment analysis with context, comparison, and more!")
176
+
177
+ with gr.Row():
178
+ with gr.Column(scale=2):
179
+ model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select Model", value="DistilBERT")
180
+ custom_model = gr.File(label="Upload Custom Model (optional)", file_types=[".bin", ".pt"])
181
+ text_input = gr.Textbox(label="Enter text or X URL", placeholder="Type text or paste an X URL...")
182
+ compare_input = gr.Textbox(label="Compare with (optional)", placeholder="Enter second text...")
183
+ audio_input = gr.Audio(label="Or Speak Your Text", type="filepath")
184
+ pos_words = gr.Textbox(label="Custom Positive Words", placeholder="love, great")
185
+ neg_words = gr.Textbox(label="Custom Negative Words", placeholder="hate, bad")
186
+ intensity_slider = gr.Slider(0.5, 1.0, value=0.7, label="Sentiment Intensity Threshold")
187
+ x_button = gr.Button("Analyze X Post")
188
+ with gr.Column(scale=3):
189
+ sentiment_output = gr.Textbox(label="Sentiment Result (Contextual)")
190
+ highlighted_output = gr.Textbox(label="Highlighted Text")
191
+ history_output = gr.Textbox(label="Analysis History (Last 5)", lines=5)
192
+ trend_output = gr.Image(label="Sentiment Timeline")
193
+ wordcloud_output = gr.Image(label="Word Cloud")
194
+ qr_output = gr.Image(label="Shareable QR Code")
195
+ compare_output = gr.Textbox(label="Comparative Analysis")
196
+
197
+ with gr.Row():
198
+ export_button = gr.Button("Export History")
199
+ export_file = gr.File(label="Download History")
200
+ theme_toggle = gr.Checkbox(label="Light Mode", value=False)
201
+ theme_status = gr.Textbox(label="Theme Status", value="Dark (default)")
202
+ feedback_slider = gr.Slider(1, 5, step=1, label="Rate this analysis (1-5)")
203
+ feedback_output = gr.Textbox(label="Feedback Status")
204
+
205
+ gr.Examples(
206
+ examples=["I love this app! It’s great.", "This is awful and sad.", "https://x.com/sample/post"],
207
+ inputs=[text_input]
208
+ )
209
+
210
+ # Event handlers
211
+ def audio_to_text(audio_file, model_name, pos_words, neg_words, intensity, custom_model_path):
212
+ text = "Simulated speech: I feel great today" if audio_file else ""
213
+ return analyze_sentiment(text, model_name, pos_words, neg_words, intensity, custom_model_path, source="audio")
214
+
215
+ text_input.change(
216
+ fn=analyze_sentiment,
217
+ inputs=[text_input, model_dropdown, pos_words, neg_words, intensity_slider, custom_model],
218
+ outputs=[sentiment_output, highlighted_output, history_output, trend_output, wordcloud_output, qr_output, compare_output, feedback_output]
219
+ )
220
+ x_button.click(
221
+ fn=fetch_x_post,
222
+ inputs=[text_input, model_dropdown, pos_words, neg_words, intensity_slider, custom_model],
223
+ outputs=[sentiment_output, highlighted_output, history_output, trend_output, wordcloud_output, qr_output, compare_output, feedback_output]
224
+ )
225
+ audio_input.change(
226
+ fn=audio_to_text,
227
+ inputs=[audio_input, model_dropdown, pos_words, neg_words, intensity_slider, custom_model],
228
+ outputs=[sentiment_output, highlighted_output, history_output, trend_output, wordcloud_output, qr_output, compare_output, feedback_output]
229
+ )
230
+ export_button.click(fn=export_history, inputs=None, outputs=export_file)
231
+ theme_toggle.change(fn=toggle_theme, inputs=theme_toggle, outputs=theme_status)
232
+ feedback_slider.change(fn=log_feedback, inputs=feedback_slider, outputs=feedback_output)
233
+
234
+ # Launch the app
235
+ interface.launch()