eggman-poff commited on
Commit
fafb5bd
·
verified ·
1 Parent(s): 0c4a014

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -5
app.py CHANGED
@@ -1,7 +1,13 @@
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import torch
3
  import tempfile
4
- import spaces
5
  from diffusers import StableVideoDiffusionPipeline
6
  from diffusers.utils import export_to_video
7
 
@@ -13,7 +19,6 @@ pipe = StableVideoDiffusionPipeline.from_pretrained(
13
  MODEL, torch_dtype=torch.float16
14
  ).to("cuda")
15
 
16
- @spaces.GPU(duration=300)
17
  def infer(first_image, last_image, prompt, guidance=7.5, frames=25):
18
  # Generate the in-between frames
19
  video = pipe(
@@ -23,10 +28,10 @@ def infer(first_image, last_image, prompt, guidance=7.5, frames=25):
23
  guidance_scale=guidance,
24
  num_frames=frames
25
  ).frames
26
- # Export as MP4 to a temp file
27
  mp4_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
28
  export_to_video(video, mp4_path, fps=15)
29
- return mp4_path # Gradio will auto-encode this to base64 for the API
30
 
31
  # Build a minimal Gradio interface
32
  demo = gr.Interface(
@@ -43,4 +48,4 @@ demo = gr.Interface(
43
  )
44
 
45
  # Enable the REST API
46
- demo.queue(concurrency_count=1).launch(show_api=True, ssr_mode=False)
 
1
+ import huggingface_hub as hf_hub
2
+ # Shim missing APIs removed in huggingface_hub >= 0.26.0
3
+ if not hasattr(hf_hub, "cached_download"):
4
+ hf_hub.cached_download = hf_hub.hf_hub_download
5
+ if not hasattr(hf_hub, "model_info"):
6
+ hf_hub.model_info = hf_hub.get_model_info
7
+
8
  import gradio as gr
9
  import torch
10
  import tempfile
 
11
  from diffusers import StableVideoDiffusionPipeline
12
  from diffusers.utils import export_to_video
13
 
 
19
  MODEL, torch_dtype=torch.float16
20
  ).to("cuda")
21
 
 
22
  def infer(first_image, last_image, prompt, guidance=7.5, frames=25):
23
  # Generate the in-between frames
24
  video = pipe(
 
28
  guidance_scale=guidance,
29
  num_frames=frames
30
  ).frames
31
+ # Export to a temporary MP4 file
32
  mp4_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
33
  export_to_video(video, mp4_path, fps=15)
34
+ return mp4_path # Gradio will auto-encode to base64 for the API
35
 
36
  # Build a minimal Gradio interface
37
  demo = gr.Interface(
 
48
  )
49
 
50
  # Enable the REST API
51
+ demo.queue(concurrency_count=1).launch(show_api=True)