File size: 5,215 Bytes
ac59957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
from PIL import Image
from os.path import splitext
from os.path import *
import re
import h5py

import cv2

cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)

TAG_CHAR = np.array([202021.25], np.float32)


def readFlow(fn):
    """Read .flo file in Middlebury format"""
    # Code adapted from:
    # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy

    # WARNING: this will work on little-endian architectures (eg Intel x86) only!
    # print 'fn = %s'%(fn)
    with open(fn, "rb") as f:
        magic = np.fromfile(f, np.float32, count=1)
        if 202021.25 != magic:
            print("Magic number incorrect. Invalid .flo file")
            return None
        else:
            w = np.fromfile(f, np.int32, count=1)
            h = np.fromfile(f, np.int32, count=1)
            # print 'Reading %d x %d flo file\n' % (w, h)
            data = np.fromfile(f, np.float32, count=2 * int(w) * int(h))
            # Reshape data into 3D array (columns, rows, bands)
            # The reshape here is for visualization, the original code is (w,h,2)
            return np.resize(data, (int(h), int(w), 2))


def readPFM(file):
    file = open(file, "rb")

    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().rstrip()
    if header == b"PF":
        color = True
    elif header == b"Pf":
        color = False
    else:
        raise Exception("Not a PFM file.")

    dim_match = re.match(rb"^(\d+)\s(\d+)\s$", file.readline())
    if dim_match:
        width, height = map(int, dim_match.groups())
    else:
        raise Exception("Malformed PFM header.")

    scale = float(file.readline().rstrip())
    if scale < 0:  # little-endian
        endian = "<"
        scale = -scale
    else:
        endian = ">"  # big-endian

    data = np.fromfile(file, endian + "f")
    shape = (height, width, 3) if color else (height, width)

    data = np.reshape(data, shape)
    data = np.flipud(data)
    return data


def writeFlow(filename, uv, v=None):
    """Write optical flow to file.

    If v is None, uv is assumed to contain both u and v channels,
    stacked in depth.
    Original code by Deqing Sun, adapted from Daniel Scharstein.
    """
    nBands = 2

    if v is None:
        assert uv.ndim == 3
        assert uv.shape[2] == 2
        u = uv[:, :, 0]
        v = uv[:, :, 1]
    else:
        u = uv

    assert u.shape == v.shape
    height, width = u.shape
    f = open(filename, "wb")
    # write the header
    f.write(TAG_CHAR)
    np.array(width).astype(np.int32).tofile(f)
    np.array(height).astype(np.int32).tofile(f)
    # arrange into matrix form
    tmp = np.zeros((height, width * nBands))
    tmp[:, np.arange(width) * 2] = u
    tmp[:, np.arange(width) * 2 + 1] = v
    tmp.astype(np.float32).tofile(f)
    f.close()


def readFlowKITTI(filename):
    flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
    flow = flow[:, :, ::-1].astype(np.float32)
    flow, valid = flow[:, :, :2], flow[:, :, 2]
    flow = (flow - 2**15) / 64.0
    return flow, valid


def readDispKITTI(filename):
    disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0
    valid = disp > 0.0
    flow = np.stack([-disp, np.zeros_like(disp)], -1)
    return flow, valid


def writeFlowKITTI(filename, uv):
    uv = 64.0 * uv + 2**15
    valid = np.ones([uv.shape[0], uv.shape[1], 1])
    uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
    cv2.imwrite(filename, uv[..., ::-1])


def readFlo5Flow(filename):
    with h5py.File(filename, "r") as f:
        if "flow" not in f.keys():
            raise IOError(
                f"File {filename} does not have a 'flow' key. Is this a valid flo5 file?"
            )
        return f["flow"][()]


def writeFlo5File(flow, filename):
    with h5py.File(filename, "w") as f:
        f.create_dataset("flow", data=flow, compression="gzip", compression_opts=5)


def readDsp5Disp(filename):
    with h5py.File(filename, "r") as f:
        if "disparity" not in f.keys():
            raise IOError(
                f"File {filename} does not have a 'disparity' key. Is this a valid dsp5 file?"
            )
        return f["disparity"][()]


def writeDsp5File(disp, filename):
    with h5py.File(filename, "w") as f:
        f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5)


def read_gen(file_name, pil=False):
    ext = splitext(file_name)[-1]
    if ext == ".png" or ext == ".jpeg" or ext == ".ppm" or ext == ".jpg":
        return Image.open(file_name)
    elif ext == ".bin" or ext == ".raw":
        return np.load(file_name)
    elif ext == ".flo":
        return readFlow(file_name).astype(np.float32)
    elif ext == ".pfm":
        flow = readPFM(file_name).astype(np.float32)
        if len(flow.shape) == 2:
            return np.stack([flow, np.zeros_like(flow)], axis=-1)
        else:
            return flow[:, :, :-1]
    elif ext == ".flo5":
        return readFlo5Flow(file_name)
    elif ext == ".dsp5":
        res = readDsp5Disp(file_name)
        res2 = np.zeros((*res.shape, 2))
        res2[:, :, 0] = res
        return res2

    return []