File size: 21,769 Bytes
ac59957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
from __future__ import division
import torch
import numpy as np
import torchvision
import PIL.Image as Image
import cv2
from torch.nn import functional as F


class Compose(object):
    """Composes several co_transforms together.
    For example:
    >>> co_transforms.Compose([
    >>>     co_transforms.CenterCrop(10),
    >>>     co_transforms.ToTensor(),
    >>>  ])
    """

    def __init__(self, co_transforms):
        self.co_transforms = co_transforms

    def __call__(self, input, target):
        for t in self.co_transforms:
            input, target = t(input, target)
        return input, target


class Scale(object):
    """Rescales the inputs and target arrays to the given 'size'.
    'size' will be the size of the smaller edge.
    For example, if height > width, then image will be
    rescaled to (size * height / width, size)
    size: size of the smaller edge
    interpolation order: Default: 2 (bilinear)
    """

    def __init__(self, size, order=1):
        self.ratio = size
        self.order = order
        if order == 0:
            self.code = cv2.INTER_NEAREST
        elif order == 1:
            self.code = cv2.INTER_LINEAR
        elif order == 2:
            self.code = cv2.INTER_CUBIC

    def __call__(self, inputs, target):
        if self.ratio == 1:
            return inputs, target
        h, w, _ = inputs[0].shape
        ratio = self.ratio

        inputs[0] = cv2.resize(
            inputs[0], None, fx=ratio, fy=ratio, interpolation=cv2.INTER_LINEAR
        )
        inputs[1] = cv2.resize(
            inputs[1], None, fx=ratio, fy=ratio, interpolation=cv2.INTER_LINEAR
        )
        # keep the mask same
        tmp = cv2.resize(
            target[:, :, 2], None, fx=ratio, fy=ratio, interpolation=cv2.INTER_NEAREST
        )
        target = (
            cv2.resize(target, None, fx=ratio, fy=ratio, interpolation=self.code)
            * ratio
        )
        target[:, :, 2] = tmp

        return inputs, target


class SpatialAug(object):
    def __init__(
        self,
        crop,
        scale=None,
        rot=None,
        trans=None,
        squeeze=None,
        schedule_coeff=1,
        order=1,
        black=False,
    ):
        self.crop = crop
        self.scale = scale
        self.rot = rot
        self.trans = trans
        self.squeeze = squeeze
        self.t = np.zeros(6)
        self.schedule_coeff = schedule_coeff
        self.order = order
        self.black = black

    def to_identity(self):
        self.t[0] = 1
        self.t[2] = 0
        self.t[4] = 0
        self.t[1] = 0
        self.t[3] = 1
        self.t[5] = 0

    def left_multiply(self, u0, u1, u2, u3, u4, u5):
        result = np.zeros(6)
        result[0] = self.t[0] * u0 + self.t[1] * u2
        result[1] = self.t[0] * u1 + self.t[1] * u3

        result[2] = self.t[2] * u0 + self.t[3] * u2
        result[3] = self.t[2] * u1 + self.t[3] * u3

        result[4] = self.t[4] * u0 + self.t[5] * u2 + u4
        result[5] = self.t[4] * u1 + self.t[5] * u3 + u5
        self.t = result

    def inverse(self):
        result = np.zeros(6)
        a = self.t[0]
        c = self.t[2]
        e = self.t[4]
        b = self.t[1]
        d = self.t[3]
        f = self.t[5]

        denom = a * d - b * c

        result[0] = d / denom
        result[1] = -b / denom
        result[2] = -c / denom
        result[3] = a / denom
        result[4] = (c * f - d * e) / denom
        result[5] = (b * e - a * f) / denom

        return result

    def grid_transform(self, meshgrid, t, normalize=True, gridsize=None):
        if gridsize is None:
            h, w = meshgrid[0].shape
        else:
            h, w = gridsize
        vgrid = torch.cat(
            [
                (meshgrid[0] * t[0] + meshgrid[1] * t[2] + t[4])[:, :, np.newaxis],
                (meshgrid[0] * t[1] + meshgrid[1] * t[3] + t[5])[:, :, np.newaxis],
            ],
            -1,
        )
        if normalize:
            vgrid[:, :, 0] = 2.0 * vgrid[:, :, 0] / max(w - 1, 1) - 1.0
            vgrid[:, :, 1] = 2.0 * vgrid[:, :, 1] / max(h - 1, 1) - 1.0
        return vgrid

    def __call__(self, inputs, target):
        h, w, _ = inputs[0].shape
        th, tw = self.crop
        meshgrid = torch.meshgrid([torch.Tensor(range(th)), torch.Tensor(range(tw))], indexing="ij")[
            ::-1
        ]
        cornergrid = torch.meshgrid(
            [torch.Tensor([0, th - 1]), torch.Tensor([0, tw - 1])], indexing="ij"
        )[::-1]

        for i in range(50):
            # im0
            self.to_identity()
            # TODO add mirror
            if np.random.binomial(1, 0.5):
                mirror = True
            else:
                mirror = False
            ##TODO
            # mirror = False
            if mirror:
                self.left_multiply(-1, 0, 0, 1, 0.5 * tw, -0.5 * th)
            else:
                self.left_multiply(1, 0, 0, 1, -0.5 * tw, -0.5 * th)
            scale0 = 1
            scale1 = 1
            squeeze0 = 1
            squeeze1 = 1
            if self.rot is not None:
                rot0 = np.random.uniform(-self.rot[0], +self.rot[0])
                rot1 = (
                    np.random.uniform(
                        -self.rot[1] * self.schedule_coeff,
                        self.rot[1] * self.schedule_coeff,
                    )
                    + rot0
                )
                self.left_multiply(
                    np.cos(rot0), np.sin(rot0), -np.sin(rot0), np.cos(rot0), 0, 0
                )
            if self.trans is not None:
                trans0 = np.random.uniform(-self.trans[0], +self.trans[0], 2)
                trans1 = (
                    np.random.uniform(
                        -self.trans[1] * self.schedule_coeff,
                        +self.trans[1] * self.schedule_coeff,
                        2,
                    )
                    + trans0
                )
                self.left_multiply(1, 0, 0, 1, trans0[0] * tw, trans0[1] * th)
            if self.squeeze is not None:
                squeeze0 = np.exp(np.random.uniform(-self.squeeze[0], self.squeeze[0]))
                squeeze1 = (
                    np.exp(
                        np.random.uniform(
                            -self.squeeze[1] * self.schedule_coeff,
                            self.squeeze[1] * self.schedule_coeff,
                        )
                    )
                    * squeeze0
                )
            if self.scale is not None:
                scale0 = np.exp(
                    np.random.uniform(
                        self.scale[2] - self.scale[0], self.scale[2] + self.scale[0]
                    )
                )
                scale1 = (
                    np.exp(
                        np.random.uniform(
                            -self.scale[1] * self.schedule_coeff,
                            self.scale[1] * self.schedule_coeff,
                        )
                    )
                    * scale0
                )
            self.left_multiply(
                1.0 / (scale0 * squeeze0), 0, 0, 1.0 / (scale0 / squeeze0), 0, 0
            )

            self.left_multiply(1, 0, 0, 1, 0.5 * w, 0.5 * h)
            transmat0 = self.t.copy()

            # im1
            self.to_identity()
            if mirror:
                self.left_multiply(-1, 0, 0, 1, 0.5 * tw, -0.5 * th)
            else:
                self.left_multiply(1, 0, 0, 1, -0.5 * tw, -0.5 * th)
            if self.rot is not None:
                self.left_multiply(
                    np.cos(rot1), np.sin(rot1), -np.sin(rot1), np.cos(rot1), 0, 0
                )
            if self.trans is not None:
                self.left_multiply(1, 0, 0, 1, trans1[0] * tw, trans1[1] * th)
            self.left_multiply(
                1.0 / (scale1 * squeeze1), 0, 0, 1.0 / (scale1 / squeeze1), 0, 0
            )
            self.left_multiply(1, 0, 0, 1, 0.5 * w, 0.5 * h)
            transmat1 = self.t.copy()
            transmat1_inv = self.inverse()

            if self.black:
                # black augmentation, allowing 0 values in the input images
                # https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/black_augmentation_layer.cu
                break
            else:
                if (
                    (
                        self.grid_transform(
                            cornergrid, transmat0, gridsize=[float(h), float(w)]
                        ).abs()
                        > 1
                    ).sum()
                    + (
                        self.grid_transform(
                            cornergrid, transmat1, gridsize=[float(h), float(w)]
                        ).abs()
                        > 1
                    ).sum()
                ) == 0:
                    break
        if i == 49:
            print("max_iter in augmentation")
            self.to_identity()
            self.left_multiply(1, 0, 0, 1, -0.5 * tw, -0.5 * th)
            self.left_multiply(1, 0, 0, 1, 0.5 * w, 0.5 * h)
            transmat0 = self.t.copy()
            transmat1 = self.t.copy()

        # do the real work
        vgrid = self.grid_transform(meshgrid, transmat0, gridsize=[float(h), float(w)])
        inputs_0 = F.grid_sample(
            torch.Tensor(inputs[0]).permute(2, 0, 1)[np.newaxis], vgrid[np.newaxis]
        )[0].permute(1, 2, 0)
        if self.order == 0:
            target_0 = F.grid_sample(
                torch.Tensor(target).permute(2, 0, 1)[np.newaxis],
                vgrid[np.newaxis],
                mode="nearest",
            )[0].permute(1, 2, 0)
        else:
            target_0 = F.grid_sample(
                torch.Tensor(target).permute(2, 0, 1)[np.newaxis], vgrid[np.newaxis]
            )[0].permute(1, 2, 0)

        mask_0 = target[:, :, 2:3].copy()
        mask_0[mask_0 == 0] = np.nan
        if self.order == 0:
            mask_0 = F.grid_sample(
                torch.Tensor(mask_0).permute(2, 0, 1)[np.newaxis],
                vgrid[np.newaxis],
                mode="nearest",
            )[0].permute(1, 2, 0)
        else:
            mask_0 = F.grid_sample(
                torch.Tensor(mask_0).permute(2, 0, 1)[np.newaxis], vgrid[np.newaxis]
            )[0].permute(1, 2, 0)
        mask_0[torch.isnan(mask_0)] = 0

        vgrid = self.grid_transform(meshgrid, transmat1, gridsize=[float(h), float(w)])
        inputs_1 = F.grid_sample(
            torch.Tensor(inputs[1]).permute(2, 0, 1)[np.newaxis], vgrid[np.newaxis]
        )[0].permute(1, 2, 0)

        # flow
        pos = target_0[:, :, :2] + self.grid_transform(
            meshgrid, transmat0, normalize=False
        )
        pos = self.grid_transform(pos.permute(2, 0, 1), transmat1_inv, normalize=False)
        if target_0.shape[2] >= 4:
            # scale
            exp = target_0[:, :, 3:] * scale1 / scale0
            target = torch.cat(
                [
                    (pos[:, :, 0] - meshgrid[0]).unsqueeze(-1),
                    (pos[:, :, 1] - meshgrid[1]).unsqueeze(-1),
                    mask_0,
                    exp,
                ],
                -1,
            )
        else:
            target = torch.cat(
                [
                    (pos[:, :, 0] - meshgrid[0]).unsqueeze(-1),
                    (pos[:, :, 1] - meshgrid[1]).unsqueeze(-1),
                    mask_0,
                ],
                -1,
            )
        #                               target_0[:,:,2].unsqueeze(-1) ], -1)
        inputs = [np.asarray(inputs_0), np.asarray(inputs_1)]
        target = np.asarray(target)
        return inputs, target


class pseudoPCAAug(object):
    """
    Chromatic Eigen Augmentation: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
    This version is faster.
    """

    def __init__(self, schedule_coeff=1):
        self.augcolor = torchvision.transforms.ColorJitter(
            brightness=0.4, contrast=0.4, saturation=0.5, hue=0.5 / 3.14
        )

    def __call__(self, inputs, target):
        inputs[0] = (
            np.asarray(self.augcolor(Image.fromarray(np.uint8(inputs[0] * 255))))
            / 255.0
        )
        inputs[1] = (
            np.asarray(self.augcolor(Image.fromarray(np.uint8(inputs[1] * 255))))
            / 255.0
        )
        return inputs, target


class PCAAug(object):
    """
    Chromatic Eigen Augmentation: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
    """

    def __init__(
        self,
        lmult_pow=[0.4, 0, -0.2],
        lmult_mult=[
            0.4,
            0,
            0,
        ],
        lmult_add=[
            0.03,
            0,
            0,
        ],
        sat_pow=[
            0.4,
            0,
            0,
        ],
        sat_mult=[0.5, 0, -0.3],
        sat_add=[
            0.03,
            0,
            0,
        ],
        col_pow=[
            0.4,
            0,
            0,
        ],
        col_mult=[
            0.2,
            0,
            0,
        ],
        col_add=[
            0.02,
            0,
            0,
        ],
        ladd_pow=[
            0.4,
            0,
            0,
        ],
        ladd_mult=[
            0.4,
            0,
            0,
        ],
        ladd_add=[
            0.04,
            0,
            0,
        ],
        col_rotate=[
            1.0,
            0,
            0,
        ],
        schedule_coeff=1,
    ):
        # no mean
        self.pow_nomean = [1, 1, 1]
        self.add_nomean = [0, 0, 0]
        self.mult_nomean = [1, 1, 1]
        self.pow_withmean = [1, 1, 1]
        self.add_withmean = [0, 0, 0]
        self.mult_withmean = [1, 1, 1]
        self.lmult_pow = 1
        self.lmult_mult = 1
        self.lmult_add = 0
        self.col_angle = 0
        if ladd_pow is not None:
            self.pow_nomean[0] = np.exp(np.random.normal(ladd_pow[2], ladd_pow[0]))
        if col_pow is not None:
            self.pow_nomean[1] = np.exp(np.random.normal(col_pow[2], col_pow[0]))
            self.pow_nomean[2] = np.exp(np.random.normal(col_pow[2], col_pow[0]))

        if ladd_add is not None:
            self.add_nomean[0] = np.random.normal(ladd_add[2], ladd_add[0])
        if col_add is not None:
            self.add_nomean[1] = np.random.normal(col_add[2], col_add[0])
            self.add_nomean[2] = np.random.normal(col_add[2], col_add[0])

        if ladd_mult is not None:
            self.mult_nomean[0] = np.exp(np.random.normal(ladd_mult[2], ladd_mult[0]))
        if col_mult is not None:
            self.mult_nomean[1] = np.exp(np.random.normal(col_mult[2], col_mult[0]))
            self.mult_nomean[2] = np.exp(np.random.normal(col_mult[2], col_mult[0]))

        # with mean
        if sat_pow is not None:
            self.pow_withmean[1] = np.exp(
                np.random.uniform(sat_pow[2] - sat_pow[0], sat_pow[2] + sat_pow[0])
            )
            self.pow_withmean[2] = self.pow_withmean[1]
        if sat_add is not None:
            self.add_withmean[1] = np.random.uniform(
                sat_add[2] - sat_add[0], sat_add[2] + sat_add[0]
            )
            self.add_withmean[2] = self.add_withmean[1]
        if sat_mult is not None:
            self.mult_withmean[1] = np.exp(
                np.random.uniform(sat_mult[2] - sat_mult[0], sat_mult[2] + sat_mult[0])
            )
            self.mult_withmean[2] = self.mult_withmean[1]

        if lmult_pow is not None:
            self.lmult_pow = np.exp(
                np.random.uniform(
                    lmult_pow[2] - lmult_pow[0], lmult_pow[2] + lmult_pow[0]
                )
            )
        if lmult_mult is not None:
            self.lmult_mult = np.exp(
                np.random.uniform(
                    lmult_mult[2] - lmult_mult[0], lmult_mult[2] + lmult_mult[0]
                )
            )
        if lmult_add is not None:
            self.lmult_add = np.random.uniform(
                lmult_add[2] - lmult_add[0], lmult_add[2] + lmult_add[0]
            )
        if col_rotate is not None:
            self.col_angle = np.random.uniform(
                col_rotate[2] - col_rotate[0], col_rotate[2] + col_rotate[0]
            )

        # eigen vectors
        self.eigvec = np.reshape(
            [0.51, 0.56, 0.65, 0.79, 0.01, -0.62, 0.35, -0.83, 0.44], [3, 3]
        ).transpose()

    def __call__(self, inputs, target):
        inputs[0] = self.pca_image(inputs[0])
        inputs[1] = self.pca_image(inputs[1])
        return inputs, target

    def pca_image(self, rgb):
        eig = np.dot(rgb, self.eigvec)
        mean_rgb = rgb.mean((0, 1))
        max_abs_eig = np.abs(eig).max((0, 1))
        max_l = np.sqrt(np.sum(max_abs_eig * max_abs_eig))
        mean_eig = np.dot(mean_rgb, self.eigvec)

        # no-mean stuff
        eig -= mean_eig[np.newaxis, np.newaxis]

        for c in range(3):
            if max_abs_eig[c] > 1e-2:
                mean_eig[c] /= max_abs_eig[c]
                eig[:, :, c] = eig[:, :, c] / max_abs_eig[c]
                eig[:, :, c] = (
                    np.power(np.abs(eig[:, :, c]), self.pow_nomean[c])
                    * ((eig[:, :, c] > 0) - 0.5)
                    * 2
                )
                eig[:, :, c] = eig[:, :, c] + self.add_nomean[c]
                eig[:, :, c] = eig[:, :, c] * self.mult_nomean[c]
        eig += mean_eig[np.newaxis, np.newaxis]

        # withmean stuff
        if max_abs_eig[0] > 1e-2:
            eig[:, :, 0] = (
                np.power(np.abs(eig[:, :, 0]), self.pow_withmean[0])
                * ((eig[:, :, 0] > 0) - 0.5)
                * 2
            )
            eig[:, :, 0] = eig[:, :, 0] + self.add_withmean[0]
            eig[:, :, 0] = eig[:, :, 0] * self.mult_withmean[0]

        s = np.sqrt(eig[:, :, 1] * eig[:, :, 1] + eig[:, :, 2] * eig[:, :, 2])
        smask = s > 1e-2
        s1 = np.power(s, self.pow_withmean[1])
        s1 = np.clip(s1 + self.add_withmean[1], 0, np.inf)
        s1 = s1 * self.mult_withmean[1]
        s1 = s1 * smask + s * (1 - smask)

        # color angle
        if self.col_angle != 0:
            temp1 = (
                np.cos(self.col_angle) * eig[:, :, 1]
                - np.sin(self.col_angle) * eig[:, :, 2]
            )
            temp2 = (
                np.sin(self.col_angle) * eig[:, :, 1]
                + np.cos(self.col_angle) * eig[:, :, 2]
            )
            eig[:, :, 1] = temp1
            eig[:, :, 2] = temp2

        # to origin magnitude
        for c in range(3):
            if max_abs_eig[c] > 1e-2:
                eig[:, :, c] = eig[:, :, c] * max_abs_eig[c]

        if max_l > 1e-2:
            l1 = np.sqrt(
                eig[:, :, 0] * eig[:, :, 0]
                + eig[:, :, 1] * eig[:, :, 1]
                + eig[:, :, 2] * eig[:, :, 2]
            )
            l1 = l1 / max_l

        eig[:, :, 1][smask] = (eig[:, :, 1] / s * s1)[smask]
        eig[:, :, 2][smask] = (eig[:, :, 2] / s * s1)[smask]
        # eig[:,:,1] = (eig[:,:,1] / s * s1) * smask + eig[:,:,1] * (1-smask)
        # eig[:,:,2] = (eig[:,:,2] / s * s1) * smask + eig[:,:,2] * (1-smask)

        if max_l > 1e-2:
            l = np.sqrt(
                eig[:, :, 0] * eig[:, :, 0]
                + eig[:, :, 1] * eig[:, :, 1]
                + eig[:, :, 2] * eig[:, :, 2]
            )
            l1 = np.power(l1, self.lmult_pow)
            l1 = np.clip(l1 + self.lmult_add, 0, np.inf)
            l1 = l1 * self.lmult_mult
            l1 = l1 * max_l
            lmask = l > 1e-2
            eig[lmask] = (eig / l[:, :, np.newaxis] * l1[:, :, np.newaxis])[lmask]
            for c in range(3):
                eig[:, :, c][lmask] = (np.clip(eig[:, :, c], -np.inf, max_abs_eig[c]))[
                    lmask
                ]
        #      for c in range(3):
        #     #           eig[:,:,c][lmask] = (eig[:,:,c] / l * l1)[lmask] * lmask + eig[:,:,c] * (1-lmask)
        #          eig[:,:,c][lmask] = (eig[:,:,c] / l * l1)[lmask]
        #          eig[:,:,c] = (np.clip(eig[:,:,c], -np.inf, max_abs_eig[c])) * lmask + eig[:,:,c] * (1-lmask)

        return np.clip(np.dot(eig, self.eigvec.transpose()), 0, 1)


class ChromaticAug(object):
    """
    Chromatic augmentation: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
    """

    def __init__(
        self,
        noise=0.06,
        gamma=0.02,
        brightness=0.02,
        contrast=0.02,
        color=0.02,
        schedule_coeff=1,
    ):
        self.noise = np.random.uniform(0, noise)
        self.gamma = np.exp(np.random.normal(0, gamma * schedule_coeff))
        self.brightness = np.random.normal(0, brightness * schedule_coeff)
        self.contrast = np.exp(np.random.normal(0, contrast * schedule_coeff))
        self.color = np.exp(np.random.normal(0, color * schedule_coeff, 3))

    def __call__(self, inputs, target):
        inputs[1] = self.chrom_aug(inputs[1])
        # noise
        inputs[0] += np.random.normal(0, self.noise, inputs[0].shape)
        inputs[1] += np.random.normal(0, self.noise, inputs[0].shape)
        return inputs, target

    def chrom_aug(self, rgb):
        # color change
        mean_in = rgb.sum(-1)
        rgb = rgb * self.color[np.newaxis, np.newaxis]
        brightness_coeff = mean_in / (rgb.sum(-1) + 0.01)
        rgb = np.clip(rgb * brightness_coeff[:, :, np.newaxis], 0, 1)
        # gamma
        rgb = np.power(rgb, self.gamma)
        # brightness
        rgb += self.brightness
        # contrast
        rgb = 0.5 + (rgb - 0.5) * self.contrast
        rgb = np.clip(rgb, 0, 1)
        return