File size: 8,375 Bytes
ac59957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
import torch.nn.functional as F
import numpy as np
from scipy import interpolate


def load_ckpt(model, path):
    """Load checkpoint"""
    state_dict = torch.load(path, map_location=torch.device("cpu"), weights_only=True)[
        "state_dict"
    ]
    model.load_state_dict(state_dict, strict=True)


def load_ckpt_submission(model, path):
    """Load checkpoint"""
    state_dict = torch.load(path, map_location=torch.device("cpu"), weights_only=True)[
        "state_dict"
    ]
    state_dict = {k[6:]: v for k, v in state_dict.items()}
    model.load_state_dict(state_dict, strict=True)


def resize_data(img1, img2, flow, factor=1.0):
    _, _, h, w = img1.shape
    h = int(h * factor)
    w = int(w * factor)
    img1 = F.interpolate(img1, (h, w), mode="area")
    img2 = F.interpolate(img2, (h, w), mode="area")
    flow = F.interpolate(flow, (h, w), mode="area") * factor
    return img1, img2, flow


class InputPadder:
    """Pads images such that dimensions are divisible by 8"""

    def __init__(self, dims, mode="sintel"):
        self.ht, self.wd = dims[-2:]
        pad_ht = (((self.ht // 16) + 1) * 16 - self.ht) % 16
        pad_wd = (((self.wd // 16) + 1) * 16 - self.wd) % 16
        self.mode = mode
        if mode == "sintel":
            self._pad = [
                pad_wd // 2,
                pad_wd - pad_wd // 2,
                pad_ht // 2,
                pad_ht - pad_ht // 2,
                0,
                0,
            ]
        elif mode == "downzero":
            self._pad = [0, pad_wd, 0, pad_ht, 0, 0]
        else:
            self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht, 0, 0]

    def pad(self, input):
        if self.mode == "downzero":
            return F.pad(input, self._pad)
        else:
            return F.pad(input, self._pad, mode="replicate")

    def unpad(self, x):
        ht, wd = x.shape[-2:]
        c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]]
        return x[..., c[0] : c[1], c[2] : c[3]]


# Intended to be used before converting to torch.Tensor
def merge_flows(flow1, valid1, flow2, valid2, method="nearest"):
    flow1 = np.transpose(flow1, axes=[2, 0, 1])

    _, ht, wd = flow1.shape

    x1, y1 = np.meshgrid(np.arange(wd), np.arange(ht))

    x1_f = x1 + flow1[0]
    y1_f = y1 + flow1[1]

    x1 = x1.reshape(-1)
    y1 = y1.reshape(-1)
    x1_f = x1_f.reshape(-1)
    y1_f = y1_f.reshape(-1)
    valid1 = valid1.reshape(-1)

    mask1 = (
        (valid1 > 0.5) & (x1_f >= 0) & (x1_f <= wd - 1) & (y1_f >= 0) & (y1_f <= ht - 1)
    )
    x1 = x1[mask1]
    y1 = y1[mask1]
    x1_f = x1_f[mask1]
    y1_f = y1_f[mask1]
    valid1 = valid1[mask1]

    # STEP 1: interpolate valid values
    new_valid1 = interpolate.interpn(
        (np.arange(ht), np.arange(wd)),
        valid2,
        (y1_f, x1_f),
        method=method,
        bounds_error=False,
        fill_value=0,
    )
    valid1 = new_valid1.round()

    mask1 = valid1 > 0.5
    x1 = x1[mask1]
    y1 = y1[mask1]
    x1_f = x1_f[mask1]
    y1_f = y1_f[mask1]
    valid1 = valid1[mask1]

    flow2_filled = fill_invalid(flow2, valid2)

    # STEP 2: interpolate flow values
    flow_x = interpolate.interpn(
        (np.arange(ht), np.arange(wd)),
        flow2_filled[:, :, 0],
        (y1_f, x1_f),
        method=method,
        bounds_error=False,
        fill_value=0,
    )
    flow_y = interpolate.interpn(
        (np.arange(ht), np.arange(wd)),
        flow2_filled[:, :, 1],
        (y1_f, x1_f),
        method=method,
        bounds_error=False,
        fill_value=0,
    )

    new_flow_x = np.zeros_like(flow1[0])
    new_flow_y = np.zeros_like(flow1[1])
    new_flow_x[(y1, x1)] = flow_x + x1_f - x1
    new_flow_y[(y1, x1)] = flow_y + y1_f - y1

    new_flow = np.stack([new_flow_x, new_flow_y], axis=0)

    new_valid = np.zeros_like(flow1[0])
    new_valid[(y1, x1)] = valid1

    new_flow = np.transpose(new_flow, axes=[1, 2, 0])
    return new_flow, new_valid


def fill_invalid(flow, valid):
    return fill_invalid_slow(flow, valid)


# Intended to be used before converting to torch.Tensor, slightly modification of forward_interpolate
def fill_invalid_slow(flow, valid):
    flow = np.transpose(flow, axes=[2, 0, 1])
    dx, dy = flow[0], flow[1]

    ht, wd = dx.shape
    x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht))

    x1 = x0.copy()
    y1 = y0.copy()

    x1 = x1.reshape(-1)
    y1 = y1.reshape(-1)
    dx = dx.reshape(-1)
    dy = dy.reshape(-1)
    valid_flat = valid.reshape(-1)

    mask = valid_flat > 0.5
    x1 = x1[mask]
    y1 = y1[mask]
    dx = dx[mask]
    dy = dy[mask]

    flow_x = interpolate.griddata(
        (x1, y1), dx, (x0, y0), method="nearest", fill_value=0
    )

    flow_y = interpolate.griddata(
        (x1, y1), dy, (x0, y0), method="nearest", fill_value=0
    )

    flow = np.stack([flow_x, flow_y], axis=0)
    flow = np.transpose(flow, axes=[1, 2, 0])
    return flow


def forward_interpolate(flow):
    flow = flow.detach().cpu().numpy()
    dx, dy = flow[0], flow[1]

    ht, wd = dx.shape
    x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht))

    x1 = x0 + dx
    y1 = y0 + dy

    x1 = x1.reshape(-1)
    y1 = y1.reshape(-1)
    dx = dx.reshape(-1)
    dy = dy.reshape(-1)

    valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht)
    x1 = x1[valid]
    y1 = y1[valid]
    dx = dx[valid]
    dy = dy[valid]

    flow_x = interpolate.griddata(
        (x1, y1), dx, (x0, y0), method="nearest", fill_value=0
    )

    flow_y = interpolate.griddata(
        (x1, y1), dy, (x0, y0), method="nearest", fill_value=0
    )

    flow = np.stack([flow_x, flow_y], axis=0)
    return torch.from_numpy(flow).float()


def bilinear_sampler(img, coords, mode="bilinear", mask=False):
    """Wrapper for grid_sample, uses pixel coordinates"""
    H, W = img.shape[-2:]
    xgrid, ygrid = coords.split([1, 1], dim=-1)
    xgrid = 2 * xgrid / (W - 1) - 1
    ygrid = 2 * ygrid / (H - 1) - 1

    grid = torch.cat([xgrid, ygrid], dim=-1)
    img = F.grid_sample(img, grid, align_corners=True)

    if mask:
        mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
        return img, mask.float()

    return img


def coords_grid(batch, ht, wd, device):
    coords = torch.meshgrid(
        torch.arange(ht, device=device), torch.arange(wd, device=device), indexing="ij"
    )
    coords = torch.stack(coords[::-1], dim=0).float()
    return coords[None].repeat(batch, 1, 1, 1)


def upflow8(flow, mode="bilinear"):
    new_size = (8 * flow.shape[2], 8 * flow.shape[3])
    return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)


def transform(T, p):
    assert T.shape == (4, 4)
    return np.einsum("H W j, i j -> H W i", p, T[:3, :3]) + T[:3, 3]


def from_homog(x):
    return x[..., :-1] / x[..., [-1]]


def reproject(depth1, pose1, pose2, K1, K2):
    H, W = depth1.shape
    x, y = np.meshgrid(np.arange(W), np.arange(H), indexing="xy")
    img_1_coords = np.stack((x, y, np.ones_like(x)), axis=-1).astype(np.float64)
    cam1_coords = np.einsum(
        "H W, H W j, i j -> H W i", depth1, img_1_coords, np.linalg.inv(K1)
    )
    rel_pose = np.linalg.inv(pose2) @ pose1
    cam2_coords = transform(rel_pose, cam1_coords)
    return from_homog(np.einsum("H W j, i j -> H W i", cam2_coords, K2))


def induced_flow(depth0, depth1, data):
    H, W = depth0.shape
    coords1 = reproject(depth0, data["T0"], data["T1"], data["K0"], data["K1"])
    x, y = np.meshgrid(np.arange(W), np.arange(H), indexing="xy")
    coords0 = np.stack([x, y], axis=-1)
    flow_01 = coords1 - coords0

    H, W = depth1.shape
    coords1 = reproject(depth1, data["T1"], data["T0"], data["K1"], data["K0"])
    x, y = np.meshgrid(np.arange(W), np.arange(H), indexing="xy")
    coords0 = np.stack([x, y], axis=-1)
    flow_10 = coords1 - coords0

    return flow_01, flow_10


def check_cycle_consistency(flow_01, flow_10):
    flow_01 = torch.from_numpy(flow_01).permute(2, 0, 1)[None]
    flow_10 = torch.from_numpy(flow_10).permute(2, 0, 1)[None]
    H, W = flow_01.shape[-2:]
    coords = coords_grid(1, H, W, flow_01.device)
    coords1 = coords + flow_01
    flow_reprojected = bilinear_sampler(flow_10, coords1.permute(0, 2, 3, 1))
    cycle = flow_reprojected + flow_01
    cycle = torch.norm(cycle, dim=1)
    mask = (cycle < 0.1 * min(H, W)).float()
    return mask[0].numpy()