Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,375 Bytes
ac59957 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import torch
import torch.nn.functional as F
import numpy as np
from scipy import interpolate
def load_ckpt(model, path):
"""Load checkpoint"""
state_dict = torch.load(path, map_location=torch.device("cpu"), weights_only=True)[
"state_dict"
]
model.load_state_dict(state_dict, strict=True)
def load_ckpt_submission(model, path):
"""Load checkpoint"""
state_dict = torch.load(path, map_location=torch.device("cpu"), weights_only=True)[
"state_dict"
]
state_dict = {k[6:]: v for k, v in state_dict.items()}
model.load_state_dict(state_dict, strict=True)
def resize_data(img1, img2, flow, factor=1.0):
_, _, h, w = img1.shape
h = int(h * factor)
w = int(w * factor)
img1 = F.interpolate(img1, (h, w), mode="area")
img2 = F.interpolate(img2, (h, w), mode="area")
flow = F.interpolate(flow, (h, w), mode="area") * factor
return img1, img2, flow
class InputPadder:
"""Pads images such that dimensions are divisible by 8"""
def __init__(self, dims, mode="sintel"):
self.ht, self.wd = dims[-2:]
pad_ht = (((self.ht // 16) + 1) * 16 - self.ht) % 16
pad_wd = (((self.wd // 16) + 1) * 16 - self.wd) % 16
self.mode = mode
if mode == "sintel":
self._pad = [
pad_wd // 2,
pad_wd - pad_wd // 2,
pad_ht // 2,
pad_ht - pad_ht // 2,
0,
0,
]
elif mode == "downzero":
self._pad = [0, pad_wd, 0, pad_ht, 0, 0]
else:
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht, 0, 0]
def pad(self, input):
if self.mode == "downzero":
return F.pad(input, self._pad)
else:
return F.pad(input, self._pad, mode="replicate")
def unpad(self, x):
ht, wd = x.shape[-2:]
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]]
return x[..., c[0] : c[1], c[2] : c[3]]
# Intended to be used before converting to torch.Tensor
def merge_flows(flow1, valid1, flow2, valid2, method="nearest"):
flow1 = np.transpose(flow1, axes=[2, 0, 1])
_, ht, wd = flow1.shape
x1, y1 = np.meshgrid(np.arange(wd), np.arange(ht))
x1_f = x1 + flow1[0]
y1_f = y1 + flow1[1]
x1 = x1.reshape(-1)
y1 = y1.reshape(-1)
x1_f = x1_f.reshape(-1)
y1_f = y1_f.reshape(-1)
valid1 = valid1.reshape(-1)
mask1 = (
(valid1 > 0.5) & (x1_f >= 0) & (x1_f <= wd - 1) & (y1_f >= 0) & (y1_f <= ht - 1)
)
x1 = x1[mask1]
y1 = y1[mask1]
x1_f = x1_f[mask1]
y1_f = y1_f[mask1]
valid1 = valid1[mask1]
# STEP 1: interpolate valid values
new_valid1 = interpolate.interpn(
(np.arange(ht), np.arange(wd)),
valid2,
(y1_f, x1_f),
method=method,
bounds_error=False,
fill_value=0,
)
valid1 = new_valid1.round()
mask1 = valid1 > 0.5
x1 = x1[mask1]
y1 = y1[mask1]
x1_f = x1_f[mask1]
y1_f = y1_f[mask1]
valid1 = valid1[mask1]
flow2_filled = fill_invalid(flow2, valid2)
# STEP 2: interpolate flow values
flow_x = interpolate.interpn(
(np.arange(ht), np.arange(wd)),
flow2_filled[:, :, 0],
(y1_f, x1_f),
method=method,
bounds_error=False,
fill_value=0,
)
flow_y = interpolate.interpn(
(np.arange(ht), np.arange(wd)),
flow2_filled[:, :, 1],
(y1_f, x1_f),
method=method,
bounds_error=False,
fill_value=0,
)
new_flow_x = np.zeros_like(flow1[0])
new_flow_y = np.zeros_like(flow1[1])
new_flow_x[(y1, x1)] = flow_x + x1_f - x1
new_flow_y[(y1, x1)] = flow_y + y1_f - y1
new_flow = np.stack([new_flow_x, new_flow_y], axis=0)
new_valid = np.zeros_like(flow1[0])
new_valid[(y1, x1)] = valid1
new_flow = np.transpose(new_flow, axes=[1, 2, 0])
return new_flow, new_valid
def fill_invalid(flow, valid):
return fill_invalid_slow(flow, valid)
# Intended to be used before converting to torch.Tensor, slightly modification of forward_interpolate
def fill_invalid_slow(flow, valid):
flow = np.transpose(flow, axes=[2, 0, 1])
dx, dy = flow[0], flow[1]
ht, wd = dx.shape
x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht))
x1 = x0.copy()
y1 = y0.copy()
x1 = x1.reshape(-1)
y1 = y1.reshape(-1)
dx = dx.reshape(-1)
dy = dy.reshape(-1)
valid_flat = valid.reshape(-1)
mask = valid_flat > 0.5
x1 = x1[mask]
y1 = y1[mask]
dx = dx[mask]
dy = dy[mask]
flow_x = interpolate.griddata(
(x1, y1), dx, (x0, y0), method="nearest", fill_value=0
)
flow_y = interpolate.griddata(
(x1, y1), dy, (x0, y0), method="nearest", fill_value=0
)
flow = np.stack([flow_x, flow_y], axis=0)
flow = np.transpose(flow, axes=[1, 2, 0])
return flow
def forward_interpolate(flow):
flow = flow.detach().cpu().numpy()
dx, dy = flow[0], flow[1]
ht, wd = dx.shape
x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht))
x1 = x0 + dx
y1 = y0 + dy
x1 = x1.reshape(-1)
y1 = y1.reshape(-1)
dx = dx.reshape(-1)
dy = dy.reshape(-1)
valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht)
x1 = x1[valid]
y1 = y1[valid]
dx = dx[valid]
dy = dy[valid]
flow_x = interpolate.griddata(
(x1, y1), dx, (x0, y0), method="nearest", fill_value=0
)
flow_y = interpolate.griddata(
(x1, y1), dy, (x0, y0), method="nearest", fill_value=0
)
flow = np.stack([flow_x, flow_y], axis=0)
return torch.from_numpy(flow).float()
def bilinear_sampler(img, coords, mode="bilinear", mask=False):
"""Wrapper for grid_sample, uses pixel coordinates"""
H, W = img.shape[-2:]
xgrid, ygrid = coords.split([1, 1], dim=-1)
xgrid = 2 * xgrid / (W - 1) - 1
ygrid = 2 * ygrid / (H - 1) - 1
grid = torch.cat([xgrid, ygrid], dim=-1)
img = F.grid_sample(img, grid, align_corners=True)
if mask:
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
return img, mask.float()
return img
def coords_grid(batch, ht, wd, device):
coords = torch.meshgrid(
torch.arange(ht, device=device), torch.arange(wd, device=device), indexing="ij"
)
coords = torch.stack(coords[::-1], dim=0).float()
return coords[None].repeat(batch, 1, 1, 1)
def upflow8(flow, mode="bilinear"):
new_size = (8 * flow.shape[2], 8 * flow.shape[3])
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
def transform(T, p):
assert T.shape == (4, 4)
return np.einsum("H W j, i j -> H W i", p, T[:3, :3]) + T[:3, 3]
def from_homog(x):
return x[..., :-1] / x[..., [-1]]
def reproject(depth1, pose1, pose2, K1, K2):
H, W = depth1.shape
x, y = np.meshgrid(np.arange(W), np.arange(H), indexing="xy")
img_1_coords = np.stack((x, y, np.ones_like(x)), axis=-1).astype(np.float64)
cam1_coords = np.einsum(
"H W, H W j, i j -> H W i", depth1, img_1_coords, np.linalg.inv(K1)
)
rel_pose = np.linalg.inv(pose2) @ pose1
cam2_coords = transform(rel_pose, cam1_coords)
return from_homog(np.einsum("H W j, i j -> H W i", cam2_coords, K2))
def induced_flow(depth0, depth1, data):
H, W = depth0.shape
coords1 = reproject(depth0, data["T0"], data["T1"], data["K0"], data["K1"])
x, y = np.meshgrid(np.arange(W), np.arange(H), indexing="xy")
coords0 = np.stack([x, y], axis=-1)
flow_01 = coords1 - coords0
H, W = depth1.shape
coords1 = reproject(depth1, data["T1"], data["T0"], data["K1"], data["K0"])
x, y = np.meshgrid(np.arange(W), np.arange(H), indexing="xy")
coords0 = np.stack([x, y], axis=-1)
flow_10 = coords1 - coords0
return flow_01, flow_10
def check_cycle_consistency(flow_01, flow_10):
flow_01 = torch.from_numpy(flow_01).permute(2, 0, 1)[None]
flow_10 = torch.from_numpy(flow_10).permute(2, 0, 1)[None]
H, W = flow_01.shape[-2:]
coords = coords_grid(1, H, W, flow_01.device)
coords1 = coords + flow_01
flow_reprojected = bilinear_sampler(flow_10, coords1.permute(0, 2, 3, 1))
cycle = flow_reprojected + flow_01
cycle = torch.norm(cycle, dim=1)
mask = (cycle < 0.1 * min(H, W)).float()
return mask[0].numpy()
|