Spaces:
Running
Running
File size: 7,072 Bytes
ac59957 e2e1f8a ac59957 e4df822 ac59957 e4df822 ac59957 e4df822 ac59957 e4df822 ac59957 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import subprocess
import time
import gradio as gr
import spaces
import torch
import tempfile
import cv2
import requests
from tqdm import tqdm
from core.utils.flow_viz import flow_to_image
from core.memfof import MEMFOF
AVAILABLE_MODELS = [
"MEMFOF-Tartan",
"MEMFOF-Tartan-T",
"MEMFOF-Tartan-T-TSKH",
"MEMFOF-Tartan-T-TSKH-kitti",
"MEMFOF-Tartan-T-TSKH-sintel",
"MEMFOF-Tartan-T-TSKH-spring",
]
class FFmpegWriter:
def __init__(self, output_path: str, width: int, height: int, fps: float):
self.output_path = output_path
self.width = width
self.height = height
self.fps = fps
self.process = None
def __enter__(self):
ffmpeg_cmd = [
"ffmpeg",
"-y",
"-f", "rawvideo",
"-vcodec", "rawvideo",
"-pix_fmt", "rgb24",
"-s", f"{self.width}x{self.height}",
"-r", str(self.fps),
"-i", "-",
"-an",
"-vcodec", "libx264",
"-pix_fmt", "yuv420p",
self.output_path
]
self.process = subprocess.Popen(
ffmpeg_cmd,
stdin=subprocess.PIPE,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL
)
return self
def write_frame(self, frame):
"""Write a single RGB24 frame to ffmpeg."""
self.process.stdin.write(frame.tobytes())
def __exit__(self, exc_type, exc_value, traceback):
try:
self.process.stdin.close()
except Exception as e:
print(f"[ffmpeg] Failed to close stdin: {e}")
finally:
self.process.wait()
@torch.inference_mode()
def process_video(
model: MEMFOF,
input_path: str,
output_path: str,
device: torch.device,
progress: gr.Progress | None = None,
soft_duration: float = float("+inf")
):
start_time = time.time()
cap = cv2.VideoCapture(input_path)
if not cap.isOpened():
raise ValueError(f"Could not open video {input_path}")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
fmap_cache = [None] * 3
pbar = tqdm(range(total_frames - 1), total=total_frames - 1)
if progress is not None:
pbar = progress.tqdm(pbar)
with FFmpegWriter(output_path, width, height, fps) as writer:
first_frame = True
for _ in pbar:
if time.time() - start_time >= soft_duration:
break
ret, frame = cap.read()
if not ret:
break
frame = torch.tensor(
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB),
dtype=torch.float32
).permute(2, 0, 1).unsqueeze(0)
if first_frame:
frames.append(frame)
first_frame = False
frames.append(frame)
if len(frames) != 3:
continue
frames_tensor = torch.stack(frames, dim=1).to(device)
output = model(frames_tensor, fmap_cache=fmap_cache)
forward_flow = output["flow"][-1][:, 1] # FW [1, 2, H, W]
flow_vis = flow_to_image(
forward_flow.squeeze(dim=0).permute(1, 2, 0).cpu().numpy(),
rad_min=0.02 * (height ** 2 + width ** 2) ** 0.5,
)
writer.write_frame(flow_vis)
fmap_cache = output["fmap_cache"]
fmap_cache.pop(0)
fmap_cache.append(None)
frames.pop(0)
cap.release()
def download(url: str) -> str:
response = requests.get(url, stream=True)
response.raise_for_status()
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
with open(tmp.name, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return tmp.name
@spaces.GPU(duration=60)
def run_demo(input_path: str, model_name: str) -> str:
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = MEMFOF.from_pretrained(f"egorchistov/optical-flow-{model_name}").eval().to(device)
output_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
process_video(model, input_path, output_path, device, progress=gr.Progress(), soft_duration=57)
return output_path
def main():
videos = "https://msu-video-group.github.io/memfof/static/videos"
davis_input = download(f"{videos}/davis_input.mp4")
kitti_input = download(f"{videos}/kitti_input.mp4")
sintel_input = download(f"{videos}/sintel_input.mp4")
spring_input = download(f"{videos}/spring_input.mp4")
video_input = gr.Video(
label="Upload a video",
value=davis_input,
)
checkpoint_dropdown = gr.Dropdown(
label="Select checkpoint",
choices=AVAILABLE_MODELS,
value="MEMFOF-Tartan-T-TSKH"
)
video_output = gr.Video(label="Optical Flow")
with gr.Blocks() as demo:
gr.Markdown("""
<h1 align="center">MEMFOF: High-Resolution Training for Memory-Efficient Multi-Frame Optical Flow Estimation</h1>
<h2 align="center"><a href="https://arxiv.org/abs/2506.23151" style="text-decoration: none;">π Paper</a> | <a href="https://msu-video-group.github.io/memfof" style="text-decoration: none;">π Project Page</a> | <a href="https://github.com/msu-video-group/memfof" style="text-decoration: none;">π» Code</a> | <a href="https://colab.research.google.com/github/msu-video-group/memfof/blob/dev/demo.ipynb" style="text-decoration: none;">π Colab</a></h2>
<p align="center">Estimate optical flow using <b>MEMFOF</b> β a <b>memory-efficient optical flow model</b> for <b>Full HD video</b> that combines <b>high accuracy</b> with <b>low VRAM usage</b>.</p>
<p align="center">Please note that the <b>processing will be automatically stopped after ~1 minute</b>.</p>
""")
with gr.Row():
with gr.Column():
video_input.render()
checkpoint_dropdown.render()
generate_btn = gr.Button("Estimate Optical Flow")
video_output.render()
generate_btn.click(
fn=run_demo,
inputs=[video_input, checkpoint_dropdown],
outputs=video_output
)
gr.Examples(
examples=[
[kitti_input, "MEMFOF-Tartan-T-TSKH-kitti"],
[sintel_input, "MEMFOF-Tartan-T-TSKH-sintel"],
[spring_input, "MEMFOF-Tartan-T-TSKH-spring"],
],
inputs=[video_input, checkpoint_dropdown],
outputs=[video_output],
fn=run_demo,
cache_examples=True,
cache_mode="lazy",
)
demo.launch()
if __name__ == "__main__":
import os
from huggingface_hub import login
if "ACCESS_TOKEN" in os.environ:
login(token=os.getenv("ACCESS_TOKEN"))
main()
|