Spaces:
Running
Running
import numpy as np | |
from PIL import Image | |
from os.path import splitext | |
from os.path import * | |
import re | |
import h5py | |
import cv2 | |
cv2.setNumThreads(0) | |
cv2.ocl.setUseOpenCL(False) | |
TAG_CHAR = np.array([202021.25], np.float32) | |
def readFlow(fn): | |
"""Read .flo file in Middlebury format""" | |
# Code adapted from: | |
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy | |
# WARNING: this will work on little-endian architectures (eg Intel x86) only! | |
# print 'fn = %s'%(fn) | |
with open(fn, "rb") as f: | |
magic = np.fromfile(f, np.float32, count=1) | |
if 202021.25 != magic: | |
print("Magic number incorrect. Invalid .flo file") | |
return None | |
else: | |
w = np.fromfile(f, np.int32, count=1) | |
h = np.fromfile(f, np.int32, count=1) | |
# print 'Reading %d x %d flo file\n' % (w, h) | |
data = np.fromfile(f, np.float32, count=2 * int(w) * int(h)) | |
# Reshape data into 3D array (columns, rows, bands) | |
# The reshape here is for visualization, the original code is (w,h,2) | |
return np.resize(data, (int(h), int(w), 2)) | |
def readPFM(file): | |
file = open(file, "rb") | |
color = None | |
width = None | |
height = None | |
scale = None | |
endian = None | |
header = file.readline().rstrip() | |
if header == b"PF": | |
color = True | |
elif header == b"Pf": | |
color = False | |
else: | |
raise Exception("Not a PFM file.") | |
dim_match = re.match(rb"^(\d+)\s(\d+)\s$", file.readline()) | |
if dim_match: | |
width, height = map(int, dim_match.groups()) | |
else: | |
raise Exception("Malformed PFM header.") | |
scale = float(file.readline().rstrip()) | |
if scale < 0: # little-endian | |
endian = "<" | |
scale = -scale | |
else: | |
endian = ">" # big-endian | |
data = np.fromfile(file, endian + "f") | |
shape = (height, width, 3) if color else (height, width) | |
data = np.reshape(data, shape) | |
data = np.flipud(data) | |
return data | |
def writeFlow(filename, uv, v=None): | |
"""Write optical flow to file. | |
If v is None, uv is assumed to contain both u and v channels, | |
stacked in depth. | |
Original code by Deqing Sun, adapted from Daniel Scharstein. | |
""" | |
nBands = 2 | |
if v is None: | |
assert uv.ndim == 3 | |
assert uv.shape[2] == 2 | |
u = uv[:, :, 0] | |
v = uv[:, :, 1] | |
else: | |
u = uv | |
assert u.shape == v.shape | |
height, width = u.shape | |
f = open(filename, "wb") | |
# write the header | |
f.write(TAG_CHAR) | |
np.array(width).astype(np.int32).tofile(f) | |
np.array(height).astype(np.int32).tofile(f) | |
# arrange into matrix form | |
tmp = np.zeros((height, width * nBands)) | |
tmp[:, np.arange(width) * 2] = u | |
tmp[:, np.arange(width) * 2 + 1] = v | |
tmp.astype(np.float32).tofile(f) | |
f.close() | |
def readFlowKITTI(filename): | |
flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR) | |
flow = flow[:, :, ::-1].astype(np.float32) | |
flow, valid = flow[:, :, :2], flow[:, :, 2] | |
flow = (flow - 2**15) / 64.0 | |
return flow, valid | |
def readDispKITTI(filename): | |
disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0 | |
valid = disp > 0.0 | |
flow = np.stack([-disp, np.zeros_like(disp)], -1) | |
return flow, valid | |
def writeFlowKITTI(filename, uv): | |
uv = 64.0 * uv + 2**15 | |
valid = np.ones([uv.shape[0], uv.shape[1], 1]) | |
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) | |
cv2.imwrite(filename, uv[..., ::-1]) | |
def readFlo5Flow(filename): | |
with h5py.File(filename, "r") as f: | |
if "flow" not in f.keys(): | |
raise IOError( | |
f"File {filename} does not have a 'flow' key. Is this a valid flo5 file?" | |
) | |
return f["flow"][()] | |
def writeFlo5File(flow, filename): | |
with h5py.File(filename, "w") as f: | |
f.create_dataset("flow", data=flow, compression="gzip", compression_opts=5) | |
def readDsp5Disp(filename): | |
with h5py.File(filename, "r") as f: | |
if "disparity" not in f.keys(): | |
raise IOError( | |
f"File {filename} does not have a 'disparity' key. Is this a valid dsp5 file?" | |
) | |
return f["disparity"][()] | |
def writeDsp5File(disp, filename): | |
with h5py.File(filename, "w") as f: | |
f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5) | |
def read_gen(file_name, pil=False): | |
ext = splitext(file_name)[-1] | |
if ext == ".png" or ext == ".jpeg" or ext == ".ppm" or ext == ".jpg": | |
return Image.open(file_name) | |
elif ext == ".bin" or ext == ".raw": | |
return np.load(file_name) | |
elif ext == ".flo": | |
return readFlow(file_name).astype(np.float32) | |
elif ext == ".pfm": | |
flow = readPFM(file_name).astype(np.float32) | |
if len(flow.shape) == 2: | |
return np.stack([flow, np.zeros_like(flow)], axis=-1) | |
else: | |
return flow[:, :, :-1] | |
elif ext == ".flo5": | |
return readFlo5Flow(file_name) | |
elif ext == ".dsp5": | |
res = readDsp5Disp(file_name) | |
res2 = np.zeros((*res.shape, 2)) | |
res2[:, :, 0] = res | |
return res2 | |
return [] | |