# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization # MIT License # # Copyright (c) 2018 Tom Runia # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to conditions. # # Author: Tom Runia # Date Created: 2018-08-03 import numpy as np def make_colorwheel(): """ Generates a color wheel for optical flow visualization as presented in: Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf Code follows the original C++ source code of Daniel Scharstein. Code follows the the Matlab source code of Deqing Sun. Returns: np.ndarray: Color wheel """ RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros((ncols, 3)) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY) col = col + RY # YG colorwheel[col : col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG) colorwheel[col : col + YG, 1] = 255 col = col + YG # GC colorwheel[col : col + GC, 1] = 255 colorwheel[col : col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC) col = col + GC # CB colorwheel[col : col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB) colorwheel[col : col + CB, 2] = 255 col = col + CB # BM colorwheel[col : col + BM, 2] = 255 colorwheel[col : col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM) col = col + BM # MR colorwheel[col : col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR) colorwheel[col : col + MR, 0] = 255 return colorwheel def flow_uv_to_colors(u, v, convert_to_bgr=False): """ Applies the flow color wheel to (possibly clipped) flow components u and v. According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun Args: u (np.ndarray): Input horizontal flow of shape [H,W] v (np.ndarray): Input vertical flow of shape [H,W] convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. Returns: np.ndarray: Flow visualization image of shape [H,W,3] """ flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) colorwheel = make_colorwheel() # shape [55x3] ncols = colorwheel.shape[0] rad = np.sqrt(np.square(u) + np.square(v)) a = np.arctan2(-v, -u) / np.pi fk = (a + 1) / 2 * (ncols - 1) k0 = np.floor(fk).astype(np.int32) k1 = k0 + 1 k1[k1 == ncols] = 0 f = fk - k0 for i in range(colorwheel.shape[1]): tmp = colorwheel[:, i] col0 = tmp[k0] / 255.0 col1 = tmp[k1] / 255.0 col = (1 - f) * col0 + f * col1 idx = rad <= 1 col[idx] = 1 - rad[idx] * (1 - col[idx]) col[~idx] = col[~idx] * 0.75 # out of range # Note the 2-i => BGR instead of RGB ch_idx = 2 - i if convert_to_bgr else i flow_image[:, :, ch_idx] = np.floor(255 * col) return flow_image def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False, rad_min=0.0): """ Expects a two dimensional flow image of shape. Args: flow_uv (np.ndarray): Flow UV image of shape [H,W,2] clip_flow (float, optional): Clip maximum of flow values. Defaults to None. convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. rad_min (float, optional): Minimum flow vector length for visualization. Defaults to 0. Returns: np.ndarray: Flow visualization image of shape [H,W,3] """ assert flow_uv.ndim == 3, "input flow must have three dimensions" assert flow_uv.shape[2] == 2, "input flow must have shape [H,W,2]" if clip_flow is not None: flow_uv = np.clip(flow_uv, 0, clip_flow) u = flow_uv[:, :, 0] v = flow_uv[:, :, 1] rad = np.sqrt(np.square(u) + np.square(v)) rad_max = max(np.max(rad), rad_min) epsilon = 1e-5 u = u / (rad_max + epsilon) v = v / (rad_max + epsilon) return flow_uv_to_colors(u, v, convert_to_bgr)