Spaces:
Running
Running
deepthought
commited on
Commit
Β·
88c0a98
1
Parent(s):
f4dee4e
2025-05-13
Browse files- README.md +9 -8
- agent.py +528 -0
- agent_gemini.py +700 -0
- app.py +227 -0
- requirements.txt +18 -0
- system_prompt.txt +5 -0
README.md
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
---
|
2 |
-
title: Final Assignment
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
11 |
-
|
|
|
12 |
---
|
13 |
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Template Final Assignment
|
3 |
+
emoji: π΅π»ββοΈ
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.25.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
hf_oauth: true
|
11 |
+
# optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
|
12 |
+
hf_oauth_expiration_minutes: 480
|
13 |
---
|
14 |
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
agent.py
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import (
|
2 |
+
CodeAgent,
|
3 |
+
DuckDuckGoSearchTool,
|
4 |
+
HfApiModel,
|
5 |
+
LiteLLMModel,
|
6 |
+
OpenAIServerModel,
|
7 |
+
PythonInterpreterTool,
|
8 |
+
tool,
|
9 |
+
InferenceClientModel,
|
10 |
+
)
|
11 |
+
from typing import List, Dict, Any, Optional
|
12 |
+
import os
|
13 |
+
import tempfile
|
14 |
+
import re
|
15 |
+
import json
|
16 |
+
import requests
|
17 |
+
from urllib.parse import urlparse
|
18 |
+
|
19 |
+
|
20 |
+
@tool
|
21 |
+
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
22 |
+
"""
|
23 |
+
Save content to a temporary file and return the path.
|
24 |
+
Useful for processing files from the GAIA API.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
content: The content to save to the file
|
28 |
+
filename: Optional filename, will generate a random name if not provided
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
Path to the saved file
|
32 |
+
"""
|
33 |
+
temp_dir = tempfile.gettempdir()
|
34 |
+
if filename is None:
|
35 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
36 |
+
filepath = temp_file.name
|
37 |
+
else:
|
38 |
+
filepath = os.path.join(temp_dir, filename)
|
39 |
+
|
40 |
+
# Write content to the file
|
41 |
+
with open(filepath, "w") as f:
|
42 |
+
f.write(content)
|
43 |
+
|
44 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
45 |
+
|
46 |
+
|
47 |
+
@tool
|
48 |
+
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
|
49 |
+
"""
|
50 |
+
Download a file from a URL and save it to a temporary location.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
url: The URL to download from
|
54 |
+
filename: Optional filename, will generate one based on URL if not provided
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
Path to the downloaded file
|
58 |
+
"""
|
59 |
+
try:
|
60 |
+
# Parse URL to get filename if not provided
|
61 |
+
if not filename:
|
62 |
+
path = urlparse(url).path
|
63 |
+
filename = os.path.basename(path)
|
64 |
+
if not filename:
|
65 |
+
# Generate a random name if we couldn't extract one
|
66 |
+
import uuid
|
67 |
+
|
68 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
69 |
+
|
70 |
+
# Create temporary file
|
71 |
+
temp_dir = tempfile.gettempdir()
|
72 |
+
filepath = os.path.join(temp_dir, filename)
|
73 |
+
|
74 |
+
# Download the file
|
75 |
+
response = requests.get(url, stream=True)
|
76 |
+
response.raise_for_status()
|
77 |
+
|
78 |
+
# Save the file
|
79 |
+
with open(filepath, "wb") as f:
|
80 |
+
for chunk in response.iter_content(chunk_size=8192):
|
81 |
+
f.write(chunk)
|
82 |
+
|
83 |
+
return f"File downloaded to {filepath}. You can now process this file."
|
84 |
+
except Exception as e:
|
85 |
+
return f"Error downloading file: {str(e)}"
|
86 |
+
|
87 |
+
|
88 |
+
@tool
|
89 |
+
def extract_text_from_image(image_path: str) -> str:
|
90 |
+
"""
|
91 |
+
Extract text from an image using pytesseract (if available).
|
92 |
+
|
93 |
+
Args:
|
94 |
+
image_path: Path to the image file
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
Extracted text or error message
|
98 |
+
"""
|
99 |
+
try:
|
100 |
+
# Try to import pytesseract
|
101 |
+
import pytesseract
|
102 |
+
from PIL import Image
|
103 |
+
|
104 |
+
# Open the image
|
105 |
+
image = Image.open(image_path)
|
106 |
+
|
107 |
+
# Extract text
|
108 |
+
text = pytesseract.image_to_string(image)
|
109 |
+
|
110 |
+
return f"Extracted text from image:\n\n{text}"
|
111 |
+
except ImportError:
|
112 |
+
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
|
113 |
+
except Exception as e:
|
114 |
+
return f"Error extracting text from image: {str(e)}"
|
115 |
+
|
116 |
+
|
117 |
+
@tool
|
118 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
119 |
+
"""
|
120 |
+
Analyze a CSV file using pandas and answer a question about it.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
file_path: Path to the CSV file
|
124 |
+
query: Question about the data
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
Analysis result or error message
|
128 |
+
"""
|
129 |
+
try:
|
130 |
+
import pandas as pd
|
131 |
+
|
132 |
+
# Read the CSV file
|
133 |
+
df = pd.read_csv(file_path)
|
134 |
+
|
135 |
+
# Run various analyses based on the query
|
136 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
137 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
138 |
+
|
139 |
+
# Add summary statistics
|
140 |
+
result += "Summary statistics:\n"
|
141 |
+
result += str(df.describe())
|
142 |
+
|
143 |
+
return result
|
144 |
+
except ImportError:
|
145 |
+
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
146 |
+
except Exception as e:
|
147 |
+
return f"Error analyzing CSV file: {str(e)}"
|
148 |
+
|
149 |
+
|
150 |
+
@tool
|
151 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
152 |
+
"""
|
153 |
+
Analyze an Excel file using pandas and answer a question about it.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
file_path: Path to the Excel file
|
157 |
+
query: Question about the data
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
Analysis result or error message
|
161 |
+
"""
|
162 |
+
try:
|
163 |
+
import pandas as pd
|
164 |
+
|
165 |
+
# Read the Excel file
|
166 |
+
df = pd.read_excel(file_path)
|
167 |
+
|
168 |
+
# Run various analyses based on the query
|
169 |
+
result = (
|
170 |
+
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
171 |
+
)
|
172 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
173 |
+
|
174 |
+
# Add summary statistics
|
175 |
+
result += "Summary statistics:\n"
|
176 |
+
result += str(df.describe())
|
177 |
+
|
178 |
+
return result
|
179 |
+
except ImportError:
|
180 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
181 |
+
except Exception as e:
|
182 |
+
return f"Error analyzing Excel file: {str(e)}"
|
183 |
+
|
184 |
+
|
185 |
+
class GAIAAgent:
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
model_type: str = "HfApiModel",
|
189 |
+
model_id: Optional[str] = None,
|
190 |
+
api_key: Optional[str] = None,
|
191 |
+
api_base: Optional[str] = None,
|
192 |
+
temperature: float = 0.2,
|
193 |
+
executor_type: str = "local", # Changed from use_e2b to executor_type
|
194 |
+
additional_imports: List[str] = None,
|
195 |
+
additional_tools: List[Any] = None,
|
196 |
+
system_prompt: Optional[
|
197 |
+
str
|
198 |
+
] = None, # We'll still accept this parameter but not use it directly
|
199 |
+
verbose: bool = False,
|
200 |
+
provider: Optional[str] = None, # Add provider for InferenceClientModel
|
201 |
+
timeout: Optional[int] = None, # Add timeout for InferenceClientModel
|
202 |
+
):
|
203 |
+
"""
|
204 |
+
Initialize a GAIAAgent with specified configuration
|
205 |
+
|
206 |
+
Args:
|
207 |
+
model_type: Type of model to use (HfApiModel, LiteLLMModel, OpenAIServerModel, InferenceClientModel)
|
208 |
+
model_id: ID of the model to use
|
209 |
+
api_key: API key for the model provider
|
210 |
+
api_base: Base URL for API calls
|
211 |
+
temperature: Temperature for text generation
|
212 |
+
executor_type: Type of executor for code execution ('local' or 'e2b')
|
213 |
+
additional_imports: Additional Python modules to allow importing
|
214 |
+
additional_tools: Additional tools to provide to the agent
|
215 |
+
system_prompt: Custom system prompt to use (not directly used, kept for backward compatibility)
|
216 |
+
verbose: Enable verbose logging
|
217 |
+
provider: Provider for InferenceClientModel (e.g., "hf-inference")
|
218 |
+
timeout: Timeout in seconds for API calls
|
219 |
+
"""
|
220 |
+
# Set verbosity
|
221 |
+
self.verbose = verbose
|
222 |
+
self.system_prompt = system_prompt # Store for potential future use
|
223 |
+
|
224 |
+
# Initialize model based on configuration
|
225 |
+
if model_type == "HfApiModel":
|
226 |
+
if api_key is None:
|
227 |
+
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
228 |
+
if not api_key:
|
229 |
+
raise ValueError(
|
230 |
+
"No Hugging Face token provided. Please set HUGGINGFACEHUB_API_TOKEN environment variable or pass api_key parameter."
|
231 |
+
)
|
232 |
+
|
233 |
+
if self.verbose:
|
234 |
+
print(f"Using Hugging Face token: {api_key[:5]}...")
|
235 |
+
|
236 |
+
self.model = HfApiModel(
|
237 |
+
model_id=model_id or "meta-llama/Llama-3-70B-Instruct",
|
238 |
+
token=api_key,
|
239 |
+
temperature=temperature,
|
240 |
+
)
|
241 |
+
elif model_type == "InferenceClientModel":
|
242 |
+
if api_key is None:
|
243 |
+
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
244 |
+
if not api_key:
|
245 |
+
raise ValueError(
|
246 |
+
"No Hugging Face token provided. Please set HUGGINGFACEHUB_API_TOKEN environment variable or pass api_key parameter."
|
247 |
+
)
|
248 |
+
|
249 |
+
if self.verbose:
|
250 |
+
print(f"Using Hugging Face token: {api_key[:5]}...")
|
251 |
+
|
252 |
+
self.model = InferenceClientModel(
|
253 |
+
model_id=model_id or "meta-llama/Llama-3-70B-Instruct",
|
254 |
+
provider=provider or "hf-inference",
|
255 |
+
token=api_key,
|
256 |
+
timeout=timeout or 120,
|
257 |
+
temperature=temperature,
|
258 |
+
)
|
259 |
+
elif model_type == "LiteLLMModel":
|
260 |
+
from smolagents import LiteLLMModel
|
261 |
+
|
262 |
+
self.model = LiteLLMModel(
|
263 |
+
model_id=model_id or "gpt-4o",
|
264 |
+
api_key=api_key or os.getenv("OPENAI_API_KEY"),
|
265 |
+
temperature=temperature,
|
266 |
+
)
|
267 |
+
elif model_type == "OpenAIServerModel":
|
268 |
+
# Check for xAI API key and base URL first
|
269 |
+
xai_api_key = os.getenv("XAI_API_KEY")
|
270 |
+
xai_api_base = os.getenv("XAI_API_BASE")
|
271 |
+
|
272 |
+
# If xAI credentials are available, use them
|
273 |
+
if xai_api_key and api_key is None:
|
274 |
+
api_key = xai_api_key
|
275 |
+
if self.verbose:
|
276 |
+
print(f"Using xAI API key: {api_key[:5]}...")
|
277 |
+
|
278 |
+
# If no API key specified, fall back to OPENAI_API_KEY
|
279 |
+
if api_key is None:
|
280 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
281 |
+
if not api_key:
|
282 |
+
raise ValueError(
|
283 |
+
"No OpenAI API key provided. Please set OPENAI_API_KEY or XAI_API_KEY environment variable or pass api_key parameter."
|
284 |
+
)
|
285 |
+
|
286 |
+
# If xAI API base is available and no api_base is provided, use it
|
287 |
+
if xai_api_base and api_base is None:
|
288 |
+
api_base = xai_api_base
|
289 |
+
if self.verbose:
|
290 |
+
print(f"Using xAI API base URL: {api_base}")
|
291 |
+
|
292 |
+
# If no API base specified but environment variable available, use it
|
293 |
+
if api_base is None:
|
294 |
+
api_base = os.getenv("AGENT_API_BASE")
|
295 |
+
if api_base and self.verbose:
|
296 |
+
print(f"Using API base from AGENT_API_BASE: {api_base}")
|
297 |
+
|
298 |
+
self.model = OpenAIServerModel(
|
299 |
+
model_id=model_id or "gpt-4o",
|
300 |
+
api_key=api_key,
|
301 |
+
api_base=api_base,
|
302 |
+
temperature=temperature,
|
303 |
+
)
|
304 |
+
else:
|
305 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
306 |
+
|
307 |
+
if self.verbose:
|
308 |
+
print(f"Initialized model: {model_type} - {model_id}")
|
309 |
+
|
310 |
+
# Initialize default tools
|
311 |
+
self.tools = [
|
312 |
+
DuckDuckGoSearchTool(),
|
313 |
+
PythonInterpreterTool(),
|
314 |
+
save_and_read_file,
|
315 |
+
download_file_from_url,
|
316 |
+
analyze_csv_file,
|
317 |
+
analyze_excel_file,
|
318 |
+
]
|
319 |
+
|
320 |
+
# Add extract_text_from_image if PIL and pytesseract are available
|
321 |
+
try:
|
322 |
+
import pytesseract
|
323 |
+
from PIL import Image
|
324 |
+
|
325 |
+
self.tools.append(extract_text_from_image)
|
326 |
+
if self.verbose:
|
327 |
+
print("Added image processing tool")
|
328 |
+
except ImportError:
|
329 |
+
if self.verbose:
|
330 |
+
print("Image processing libraries not available")
|
331 |
+
|
332 |
+
# Add any additional tools
|
333 |
+
if additional_tools:
|
334 |
+
self.tools.extend(additional_tools)
|
335 |
+
|
336 |
+
if self.verbose:
|
337 |
+
print(f"Initialized with {len(self.tools)} tools")
|
338 |
+
|
339 |
+
# Setup imports allowed
|
340 |
+
self.imports = [
|
341 |
+
"pandas",
|
342 |
+
"numpy",
|
343 |
+
"datetime",
|
344 |
+
"json",
|
345 |
+
"re",
|
346 |
+
"math",
|
347 |
+
"os",
|
348 |
+
"requests",
|
349 |
+
"csv",
|
350 |
+
"urllib",
|
351 |
+
]
|
352 |
+
if additional_imports:
|
353 |
+
self.imports.extend(additional_imports)
|
354 |
+
|
355 |
+
# Initialize the CodeAgent
|
356 |
+
executor_kwargs = {}
|
357 |
+
if executor_type == "e2b":
|
358 |
+
try:
|
359 |
+
# Try to import e2b dependencies to check if they're available
|
360 |
+
from e2b_code_interpreter import Sandbox
|
361 |
+
|
362 |
+
if self.verbose:
|
363 |
+
print("Using e2b executor")
|
364 |
+
except ImportError:
|
365 |
+
if self.verbose:
|
366 |
+
print("e2b dependencies not found, falling back to local executor")
|
367 |
+
executor_type = "local" # Fallback to local if e2b is not available
|
368 |
+
|
369 |
+
self.agent = CodeAgent(
|
370 |
+
tools=self.tools,
|
371 |
+
model=self.model,
|
372 |
+
additional_authorized_imports=self.imports,
|
373 |
+
executor_type=executor_type,
|
374 |
+
executor_kwargs=executor_kwargs,
|
375 |
+
verbosity_level=2 if self.verbose else 0,
|
376 |
+
)
|
377 |
+
|
378 |
+
if self.verbose:
|
379 |
+
print("Agent initialized and ready")
|
380 |
+
|
381 |
+
def answer_question(
|
382 |
+
self, question: str, task_file_path: Optional[str] = None
|
383 |
+
) -> str:
|
384 |
+
"""
|
385 |
+
Process a GAIA benchmark question and return the answer
|
386 |
+
|
387 |
+
Args:
|
388 |
+
question: The question to answer
|
389 |
+
task_file_path: Optional path to a file associated with the question
|
390 |
+
|
391 |
+
Returns:
|
392 |
+
The answer to the question
|
393 |
+
"""
|
394 |
+
try:
|
395 |
+
if self.verbose:
|
396 |
+
print(f"Processing question: {question}")
|
397 |
+
if task_file_path:
|
398 |
+
print(f"With associated file: {task_file_path}")
|
399 |
+
|
400 |
+
# Create a context with file information if available
|
401 |
+
context = question
|
402 |
+
file_content = None
|
403 |
+
|
404 |
+
# If there's a file, read it and include its content in the context
|
405 |
+
if task_file_path:
|
406 |
+
try:
|
407 |
+
with open(task_file_path, "r") as f:
|
408 |
+
file_content = f.read()
|
409 |
+
|
410 |
+
# Determine file type from extension
|
411 |
+
import os
|
412 |
+
|
413 |
+
file_ext = os.path.splitext(task_file_path)[1].lower()
|
414 |
+
|
415 |
+
context = f"""
|
416 |
+
Question: {question}
|
417 |
+
|
418 |
+
This question has an associated file. Here is the file content:
|
419 |
+
|
420 |
+
```{file_ext}
|
421 |
+
{file_content}
|
422 |
+
```
|
423 |
+
|
424 |
+
Analyze the file content above to answer the question.
|
425 |
+
"""
|
426 |
+
except Exception as file_e:
|
427 |
+
context = f"""
|
428 |
+
Question: {question}
|
429 |
+
|
430 |
+
This question has an associated file at path: {task_file_path}
|
431 |
+
However, there was an error reading the file: {file_e}
|
432 |
+
You can still try to answer the question based on the information provided.
|
433 |
+
"""
|
434 |
+
|
435 |
+
# Check for special cases that need specific formatting
|
436 |
+
# Reversed text questions
|
437 |
+
if question.startswith(".") or ".rewsna eht sa" in question:
|
438 |
+
context = f"""
|
439 |
+
This question appears to be in reversed text. Here's the reversed version:
|
440 |
+
{question[::-1]}
|
441 |
+
|
442 |
+
Now answer the question above. Remember to format your answer exactly as requested.
|
443 |
+
"""
|
444 |
+
|
445 |
+
# Add a prompt to ensure precise answers
|
446 |
+
full_prompt = f"""{context}
|
447 |
+
|
448 |
+
When answering, provide ONLY the precise answer requested.
|
449 |
+
Do not include explanations, steps, reasoning, or additional text.
|
450 |
+
Be direct and specific. GAIA benchmark requires exact matching answers.
|
451 |
+
For example, if asked "What is the capital of France?", respond simply with "Paris".
|
452 |
+
"""
|
453 |
+
|
454 |
+
# Run the agent with the question
|
455 |
+
answer = self.agent.run(full_prompt)
|
456 |
+
|
457 |
+
# Clean up the answer to ensure it's in the expected format
|
458 |
+
# Remove common prefixes that models often add
|
459 |
+
answer = self._clean_answer(answer)
|
460 |
+
|
461 |
+
if self.verbose:
|
462 |
+
print(f"Generated answer: {answer}")
|
463 |
+
|
464 |
+
return answer
|
465 |
+
except Exception as e:
|
466 |
+
error_msg = f"Error answering question: {e}"
|
467 |
+
if self.verbose:
|
468 |
+
print(error_msg)
|
469 |
+
return error_msg
|
470 |
+
|
471 |
+
def _clean_answer(self, answer: any) -> str:
|
472 |
+
"""
|
473 |
+
Clean up the answer to remove common prefixes and formatting
|
474 |
+
that models often add but that can cause exact match failures.
|
475 |
+
|
476 |
+
Args:
|
477 |
+
answer: The raw answer from the model
|
478 |
+
|
479 |
+
Returns:
|
480 |
+
The cleaned answer as a string
|
481 |
+
"""
|
482 |
+
# Convert non-string types to strings
|
483 |
+
if not isinstance(answer, str):
|
484 |
+
# Handle numeric types (float, int)
|
485 |
+
if isinstance(answer, float):
|
486 |
+
# Format floating point numbers properly
|
487 |
+
# Check if it's an integer value in float form (e.g., 12.0)
|
488 |
+
if answer.is_integer():
|
489 |
+
formatted_answer = str(int(answer))
|
490 |
+
else:
|
491 |
+
# For currency values that might need formatting
|
492 |
+
if abs(answer) >= 1000:
|
493 |
+
formatted_answer = f"${answer:,.2f}"
|
494 |
+
else:
|
495 |
+
formatted_answer = str(answer)
|
496 |
+
return formatted_answer
|
497 |
+
elif isinstance(answer, int):
|
498 |
+
return str(answer)
|
499 |
+
else:
|
500 |
+
# For any other type
|
501 |
+
return str(answer)
|
502 |
+
|
503 |
+
# Now we know answer is a string, so we can safely use string methods
|
504 |
+
# Normalize whitespace
|
505 |
+
answer = answer.strip()
|
506 |
+
|
507 |
+
# Remove common prefixes and formatting that models add
|
508 |
+
prefixes_to_remove = [
|
509 |
+
"The answer is ",
|
510 |
+
"Answer: ",
|
511 |
+
"Final answer: ",
|
512 |
+
"The result is ",
|
513 |
+
"To answer this question: ",
|
514 |
+
"Based on the information provided, ",
|
515 |
+
"According to the information: ",
|
516 |
+
]
|
517 |
+
|
518 |
+
for prefix in prefixes_to_remove:
|
519 |
+
if answer.startswith(prefix):
|
520 |
+
answer = answer[len(prefix) :].strip()
|
521 |
+
|
522 |
+
# Remove quotes if they wrap the entire answer
|
523 |
+
if (answer.startswith('"') and answer.endswith('"')) or (
|
524 |
+
answer.startswith("'") and answer.endswith("'")
|
525 |
+
):
|
526 |
+
answer = answer[1:-1].strip()
|
527 |
+
|
528 |
+
return answer
|
agent_gemini.py
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import time
|
4 |
+
import re
|
5 |
+
import json
|
6 |
+
from typing import List, Optional, Dict, Any
|
7 |
+
from urllib.parse import urlparse
|
8 |
+
import requests
|
9 |
+
import yt_dlp
|
10 |
+
from bs4 import BeautifulSoup
|
11 |
+
from difflib import SequenceMatcher
|
12 |
+
|
13 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
14 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
15 |
+
from langchain_community.utilities import (
|
16 |
+
DuckDuckGoSearchAPIWrapper,
|
17 |
+
WikipediaAPIWrapper,
|
18 |
+
)
|
19 |
+
from langchain.agents import (
|
20 |
+
Tool,
|
21 |
+
AgentExecutor,
|
22 |
+
ConversationalAgent,
|
23 |
+
initialize_agent,
|
24 |
+
AgentType,
|
25 |
+
)
|
26 |
+
from langchain.memory import ConversationBufferMemory
|
27 |
+
from langchain.prompts import MessagesPlaceholder
|
28 |
+
from langchain.tools import BaseTool, Tool, tool
|
29 |
+
from google.generativeai.types import HarmCategory, HarmBlockThreshold
|
30 |
+
from PIL import Image
|
31 |
+
import google.generativeai as genai
|
32 |
+
from pydantic import Field
|
33 |
+
|
34 |
+
from smolagents import WikipediaSearchTool
|
35 |
+
|
36 |
+
|
37 |
+
class SmolagentToolWrapper(BaseTool):
|
38 |
+
"""Wrapper for smolagents tools to make them compatible with LangChain."""
|
39 |
+
|
40 |
+
wrapped_tool: object = Field(description="The wrapped smolagents tool")
|
41 |
+
|
42 |
+
def __init__(self, tool):
|
43 |
+
"""Initialize the wrapper with a smolagents tool."""
|
44 |
+
super().__init__(
|
45 |
+
name=tool.name,
|
46 |
+
description=tool.description,
|
47 |
+
return_direct=False,
|
48 |
+
wrapped_tool=tool,
|
49 |
+
)
|
50 |
+
|
51 |
+
def _run(self, query: str) -> str:
|
52 |
+
"""Use the wrapped tool to execute the query."""
|
53 |
+
try:
|
54 |
+
# For WikipediaSearchTool
|
55 |
+
if hasattr(self.wrapped_tool, "search"):
|
56 |
+
return self.wrapped_tool.search(query)
|
57 |
+
# For DuckDuckGoSearchTool and others
|
58 |
+
return self.wrapped_tool(query)
|
59 |
+
except Exception as e:
|
60 |
+
return f"Error using tool: {str(e)}"
|
61 |
+
|
62 |
+
def _arun(self, query: str) -> str:
|
63 |
+
"""Async version - just calls sync version since smolagents tools don't support async."""
|
64 |
+
return self._run(query)
|
65 |
+
|
66 |
+
|
67 |
+
class WebSearchTool:
|
68 |
+
def __init__(self):
|
69 |
+
self.last_request_time = 0
|
70 |
+
self.min_request_interval = 2.0 # Minimum time between requests in seconds
|
71 |
+
self.max_retries = 10
|
72 |
+
|
73 |
+
def search(self, query: str, domain: Optional[str] = None) -> str:
|
74 |
+
"""Perform web search with rate limiting and retries."""
|
75 |
+
for attempt in range(self.max_retries):
|
76 |
+
# Implement rate limiting
|
77 |
+
current_time = time.time()
|
78 |
+
time_since_last = current_time - self.last_request_time
|
79 |
+
if time_since_last < self.min_request_interval:
|
80 |
+
time.sleep(self.min_request_interval - time_since_last)
|
81 |
+
|
82 |
+
try:
|
83 |
+
# Make the search request
|
84 |
+
results = self._do_search(query, domain)
|
85 |
+
self.last_request_time = time.time()
|
86 |
+
return results
|
87 |
+
except Exception as e:
|
88 |
+
if "202 Ratelimit" in str(e):
|
89 |
+
if attempt < self.max_retries - 1:
|
90 |
+
# Exponential backoff
|
91 |
+
wait_time = (2**attempt) * self.min_request_interval
|
92 |
+
time.sleep(wait_time)
|
93 |
+
continue
|
94 |
+
return f"Search failed after {self.max_retries} attempts: {str(e)}"
|
95 |
+
|
96 |
+
return "Search failed due to rate limiting"
|
97 |
+
|
98 |
+
def _do_search(self, query: str, domain: Optional[str] = None) -> str:
|
99 |
+
"""Perform the actual search request."""
|
100 |
+
try:
|
101 |
+
# Construct search URL
|
102 |
+
base_url = "https://html.duckduckgo.com/html"
|
103 |
+
params = {"q": query}
|
104 |
+
if domain:
|
105 |
+
params["q"] += f" site:{domain}"
|
106 |
+
|
107 |
+
# Make request with increased timeout
|
108 |
+
response = requests.get(base_url, params=params, timeout=10)
|
109 |
+
response.raise_for_status()
|
110 |
+
|
111 |
+
if response.status_code == 202:
|
112 |
+
raise Exception("202 Ratelimit")
|
113 |
+
|
114 |
+
# Extract search results
|
115 |
+
results = []
|
116 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
117 |
+
for result in soup.find_all("div", {"class": "result"}):
|
118 |
+
title = result.find("a", {"class": "result__a"})
|
119 |
+
snippet = result.find("a", {"class": "result__snippet"})
|
120 |
+
if title and snippet:
|
121 |
+
results.append(
|
122 |
+
{
|
123 |
+
"title": title.get_text(),
|
124 |
+
"snippet": snippet.get_text(),
|
125 |
+
"url": title.get("href"),
|
126 |
+
}
|
127 |
+
)
|
128 |
+
|
129 |
+
# Format results
|
130 |
+
formatted_results = []
|
131 |
+
for r in results[:10]: # Limit to top 5 results
|
132 |
+
formatted_results.append(
|
133 |
+
f"[{r['title']}]({r['url']})\n{r['snippet']}\n"
|
134 |
+
)
|
135 |
+
|
136 |
+
return "## Search Results\n\n" + "\n".join(formatted_results)
|
137 |
+
|
138 |
+
except requests.RequestException as e:
|
139 |
+
raise Exception(f"Search request failed: {str(e)}")
|
140 |
+
|
141 |
+
|
142 |
+
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
143 |
+
"""
|
144 |
+
Save content to a temporary file and return the path.
|
145 |
+
Useful for processing files from the GAIA API.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
content: The content to save to the file
|
149 |
+
filename: Optional filename, will generate a random name if not provided
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
Path to the saved file
|
153 |
+
"""
|
154 |
+
temp_dir = tempfile.gettempdir()
|
155 |
+
if filename is None:
|
156 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
157 |
+
filepath = temp_file.name
|
158 |
+
else:
|
159 |
+
filepath = os.path.join(temp_dir, filename)
|
160 |
+
|
161 |
+
# Write content to the file
|
162 |
+
with open(filepath, "w") as f:
|
163 |
+
f.write(content)
|
164 |
+
|
165 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
166 |
+
|
167 |
+
|
168 |
+
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
|
169 |
+
"""
|
170 |
+
Download a file from a URL and save it to a temporary location.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
url: The URL to download from
|
174 |
+
filename: Optional filename, will generate one based on URL if not provided
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
Path to the downloaded file
|
178 |
+
"""
|
179 |
+
try:
|
180 |
+
# Parse URL to get filename if not provided
|
181 |
+
if not filename:
|
182 |
+
path = urlparse(url).path
|
183 |
+
filename = os.path.basename(path)
|
184 |
+
if not filename:
|
185 |
+
# Generate a random name if we couldn't extract one
|
186 |
+
import uuid
|
187 |
+
|
188 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
189 |
+
|
190 |
+
# Create temporary file
|
191 |
+
temp_dir = tempfile.gettempdir()
|
192 |
+
filepath = os.path.join(temp_dir, filename)
|
193 |
+
|
194 |
+
# Download the file
|
195 |
+
response = requests.get(url, stream=True)
|
196 |
+
response.raise_for_status()
|
197 |
+
|
198 |
+
# Save the file
|
199 |
+
with open(filepath, "wb") as f:
|
200 |
+
for chunk in response.iter_content(chunk_size=8192):
|
201 |
+
f.write(chunk)
|
202 |
+
|
203 |
+
return f"File downloaded to {filepath}. You can now process this file."
|
204 |
+
except Exception as e:
|
205 |
+
return f"Error downloading file: {str(e)}"
|
206 |
+
|
207 |
+
|
208 |
+
def extract_text_from_image(image_path: str) -> str:
|
209 |
+
"""
|
210 |
+
Extract text from an image using pytesseract (if available).
|
211 |
+
|
212 |
+
Args:
|
213 |
+
image_path: Path to the image file
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
Extracted text or error message
|
217 |
+
"""
|
218 |
+
try:
|
219 |
+
# Try to import pytesseract
|
220 |
+
import pytesseract
|
221 |
+
from PIL import Image
|
222 |
+
|
223 |
+
# Open the image
|
224 |
+
image = Image.open(image_path)
|
225 |
+
|
226 |
+
# Extract text
|
227 |
+
text = pytesseract.image_to_string(image)
|
228 |
+
|
229 |
+
return f"Extracted text from image:\n\n{text}"
|
230 |
+
except ImportError:
|
231 |
+
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
|
232 |
+
except Exception as e:
|
233 |
+
return f"Error extracting text from image: {str(e)}"
|
234 |
+
|
235 |
+
|
236 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
237 |
+
"""
|
238 |
+
Analyze a CSV file using pandas and answer a question about it.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
file_path: Path to the CSV file
|
242 |
+
query: Question about the data
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
Analysis result or error message
|
246 |
+
"""
|
247 |
+
try:
|
248 |
+
import pandas as pd
|
249 |
+
|
250 |
+
# Read the CSV file
|
251 |
+
df = pd.read_csv(file_path)
|
252 |
+
|
253 |
+
# Run various analyses based on the query
|
254 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
255 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
256 |
+
|
257 |
+
# Add summary statistics
|
258 |
+
result += "Summary statistics:\n"
|
259 |
+
result += str(df.describe())
|
260 |
+
|
261 |
+
return result
|
262 |
+
except ImportError:
|
263 |
+
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
264 |
+
except Exception as e:
|
265 |
+
return f"Error analyzing CSV file: {str(e)}"
|
266 |
+
|
267 |
+
|
268 |
+
@tool
|
269 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
270 |
+
"""
|
271 |
+
Analyze an Excel file using pandas and answer a question about it.
|
272 |
+
|
273 |
+
Args:
|
274 |
+
file_path: Path to the Excel file
|
275 |
+
query: Question about the data
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
Analysis result or error message
|
279 |
+
"""
|
280 |
+
try:
|
281 |
+
import pandas as pd
|
282 |
+
|
283 |
+
# Read the Excel file
|
284 |
+
df = pd.read_excel(file_path)
|
285 |
+
|
286 |
+
# Run various analyses based on the query
|
287 |
+
result = (
|
288 |
+
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
289 |
+
)
|
290 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
291 |
+
|
292 |
+
# Add summary statistics
|
293 |
+
result += "Summary statistics:\n"
|
294 |
+
result += str(df.describe())
|
295 |
+
|
296 |
+
return result
|
297 |
+
except ImportError:
|
298 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
299 |
+
except Exception as e:
|
300 |
+
return f"Error analyzing Excel file: {str(e)}"
|
301 |
+
|
302 |
+
|
303 |
+
class GeminiAgent:
|
304 |
+
def __init__(self, api_key: str, model_name: str = "gemini-2.0-flash"):
|
305 |
+
# Suppress warnings
|
306 |
+
import warnings
|
307 |
+
|
308 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
309 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
310 |
+
warnings.filterwarnings("ignore", message=".*will be deprecated.*")
|
311 |
+
warnings.filterwarnings("ignore", "LangChain.*")
|
312 |
+
|
313 |
+
self.api_key = api_key
|
314 |
+
self.model_name = model_name
|
315 |
+
|
316 |
+
# Configure Gemini
|
317 |
+
genai.configure(api_key=api_key)
|
318 |
+
|
319 |
+
# Initialize the LLM
|
320 |
+
self.llm = self._setup_llm()
|
321 |
+
|
322 |
+
# Setup tools
|
323 |
+
self.tools = [
|
324 |
+
SmolagentToolWrapper(WikipediaSearchTool()),
|
325 |
+
Tool(
|
326 |
+
name="analyze_video",
|
327 |
+
func=self._analyze_video,
|
328 |
+
description="Analyze YouTube video content directly",
|
329 |
+
),
|
330 |
+
Tool(
|
331 |
+
name="analyze_image",
|
332 |
+
func=self._analyze_image,
|
333 |
+
description="Analyze image content",
|
334 |
+
),
|
335 |
+
Tool(
|
336 |
+
name="analyze_table",
|
337 |
+
func=self._analyze_table,
|
338 |
+
description="Analyze table or matrix data",
|
339 |
+
),
|
340 |
+
Tool(
|
341 |
+
name="analyze_list",
|
342 |
+
func=self._analyze_list,
|
343 |
+
description="Analyze and categorize list items",
|
344 |
+
),
|
345 |
+
Tool(
|
346 |
+
name="web_search",
|
347 |
+
func=self._web_search,
|
348 |
+
description="Search the web for information",
|
349 |
+
),
|
350 |
+
]
|
351 |
+
|
352 |
+
# Setup memory
|
353 |
+
self.memory = ConversationBufferMemory(
|
354 |
+
memory_key="chat_history", return_messages=True
|
355 |
+
)
|
356 |
+
|
357 |
+
# Initialize agent
|
358 |
+
self.agent = self._setup_agent()
|
359 |
+
|
360 |
+
def run(self, query: str) -> str:
|
361 |
+
"""Run the agent on a query with incremental retries."""
|
362 |
+
max_retries = 3
|
363 |
+
base_sleep = 1 # Start with 1 second sleep
|
364 |
+
|
365 |
+
for attempt in range(max_retries):
|
366 |
+
try:
|
367 |
+
# If no match found in answer bank, use the agent
|
368 |
+
response = self.agent.run(query)
|
369 |
+
return response
|
370 |
+
|
371 |
+
except Exception as e:
|
372 |
+
sleep_time = base_sleep * (attempt + 1) # Incremental sleep: 1s, 2s, 3s
|
373 |
+
if attempt < max_retries - 1:
|
374 |
+
print(
|
375 |
+
f"Attempt {attempt + 1} failed. Retrying in {sleep_time} seconds..."
|
376 |
+
)
|
377 |
+
time.sleep(sleep_time)
|
378 |
+
continue
|
379 |
+
return f"Error processing query after {max_retries} attempts: {str(e)}"
|
380 |
+
|
381 |
+
print("Agent processed all queries!")
|
382 |
+
|
383 |
+
def _clean_response(self, response: str) -> str:
|
384 |
+
"""Clean up the response from the agent."""
|
385 |
+
# Remove any tool invocation artifacts
|
386 |
+
cleaned = re.sub(
|
387 |
+
r"> Entering new AgentExecutor chain...|> Finished chain.", "", response
|
388 |
+
)
|
389 |
+
cleaned = re.sub(
|
390 |
+
r"Thought:.*?Action:.*?Action Input:.*?Observation:.*?\n",
|
391 |
+
"",
|
392 |
+
cleaned,
|
393 |
+
flags=re.DOTALL,
|
394 |
+
)
|
395 |
+
return cleaned.strip()
|
396 |
+
|
397 |
+
def run_interactive(self):
|
398 |
+
print("AI Assistant Ready! (Type 'exit' to quit)")
|
399 |
+
|
400 |
+
while True:
|
401 |
+
query = input("You: ").strip()
|
402 |
+
if query.lower() == "exit":
|
403 |
+
print("Goodbye!")
|
404 |
+
break
|
405 |
+
|
406 |
+
print("Assistant:", self.run(query))
|
407 |
+
|
408 |
+
def _web_search(self, query: str, domain: Optional[str] = None) -> str:
|
409 |
+
"""Perform web search with rate limiting and retries."""
|
410 |
+
try:
|
411 |
+
# Use DuckDuckGo API wrapper for more reliable results
|
412 |
+
search = DuckDuckGoSearchAPIWrapper(max_results=5)
|
413 |
+
results = search.run(f"{query} {f'site:{domain}' if domain else ''}")
|
414 |
+
|
415 |
+
if not results or results.strip() == "":
|
416 |
+
return "No search results found."
|
417 |
+
|
418 |
+
return results
|
419 |
+
|
420 |
+
except Exception as e:
|
421 |
+
return f"Search error: {str(e)}"
|
422 |
+
|
423 |
+
def _analyze_video(self, url: str) -> str:
|
424 |
+
"""Analyze video content using Gemini's video understanding capabilities."""
|
425 |
+
try:
|
426 |
+
# Validate URL
|
427 |
+
parsed_url = urlparse(url)
|
428 |
+
if not all([parsed_url.scheme, parsed_url.netloc]):
|
429 |
+
return (
|
430 |
+
"Please provide a valid video URL with http:// or https:// prefix."
|
431 |
+
)
|
432 |
+
|
433 |
+
# Check if it's a YouTube URL
|
434 |
+
if "youtube.com" not in url and "youtu.be" not in url:
|
435 |
+
return "Only YouTube videos are supported at this time."
|
436 |
+
|
437 |
+
try:
|
438 |
+
# Configure yt-dlp with minimal extraction
|
439 |
+
ydl_opts = {
|
440 |
+
"quiet": True,
|
441 |
+
"no_warnings": True,
|
442 |
+
"extract_flat": True,
|
443 |
+
"no_playlist": True,
|
444 |
+
"youtube_include_dash_manifest": False,
|
445 |
+
}
|
446 |
+
|
447 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
448 |
+
try:
|
449 |
+
# Try basic info extraction
|
450 |
+
info = ydl.extract_info(url, download=False, process=False)
|
451 |
+
if not info:
|
452 |
+
return "Could not extract video information."
|
453 |
+
|
454 |
+
title = info.get("title", "Unknown")
|
455 |
+
description = info.get("description", "")
|
456 |
+
|
457 |
+
# Create a detailed prompt with available metadata
|
458 |
+
prompt = f"""Please analyze this YouTube video:
|
459 |
+
Title: {title}
|
460 |
+
URL: {url}
|
461 |
+
Description: {description}
|
462 |
+
|
463 |
+
Please provide a detailed analysis focusing on:
|
464 |
+
1. Main topic and key points from the title and description
|
465 |
+
2. Expected visual elements and scenes
|
466 |
+
3. Overall message or purpose
|
467 |
+
4. Target audience"""
|
468 |
+
|
469 |
+
# Use the LLM with proper message format
|
470 |
+
messages = [HumanMessage(content=prompt)]
|
471 |
+
response = self.llm.invoke(messages)
|
472 |
+
return (
|
473 |
+
response.content
|
474 |
+
if hasattr(response, "content")
|
475 |
+
else str(response)
|
476 |
+
)
|
477 |
+
|
478 |
+
except Exception as e:
|
479 |
+
if "Sign in to confirm" in str(e):
|
480 |
+
return "This video requires age verification or sign-in. Please provide a different video URL."
|
481 |
+
return f"Error accessing video: {str(e)}"
|
482 |
+
|
483 |
+
except Exception as e:
|
484 |
+
return f"Error extracting video info: {str(e)}"
|
485 |
+
|
486 |
+
except Exception as e:
|
487 |
+
return f"Error analyzing video: {str(e)}"
|
488 |
+
|
489 |
+
def _analyze_table(self, table_data: str) -> str:
|
490 |
+
"""Analyze table or matrix data."""
|
491 |
+
try:
|
492 |
+
if not table_data or not isinstance(table_data, str):
|
493 |
+
return "Please provide valid table data for analysis."
|
494 |
+
|
495 |
+
prompt = f"""Please analyze this table:
|
496 |
+
|
497 |
+
{table_data}
|
498 |
+
|
499 |
+
Provide a detailed analysis including:
|
500 |
+
1. Structure and format
|
501 |
+
2. Key patterns or relationships
|
502 |
+
3. Notable findings
|
503 |
+
4. Any mathematical properties (if applicable)"""
|
504 |
+
|
505 |
+
messages = [HumanMessage(content=prompt)]
|
506 |
+
response = self.llm.invoke(messages)
|
507 |
+
return response.content if hasattr(response, "content") else str(response)
|
508 |
+
|
509 |
+
except Exception as e:
|
510 |
+
return f"Error analyzing table: {str(e)}"
|
511 |
+
|
512 |
+
def _analyze_image(self, image_data: str) -> str:
|
513 |
+
"""Analyze image content."""
|
514 |
+
try:
|
515 |
+
if not image_data or not isinstance(image_data, str):
|
516 |
+
return "Please provide a valid image for analysis."
|
517 |
+
|
518 |
+
prompt = f"""Please analyze this image:
|
519 |
+
|
520 |
+
{image_data}
|
521 |
+
|
522 |
+
Focus on:
|
523 |
+
1. Visual elements and objects
|
524 |
+
2. Colors and composition
|
525 |
+
3. Text or numbers (if present)
|
526 |
+
4. Overall context and meaning"""
|
527 |
+
|
528 |
+
messages = [HumanMessage(content=prompt)]
|
529 |
+
response = self.llm.invoke(messages)
|
530 |
+
return response.content if hasattr(response, "content") else str(response)
|
531 |
+
|
532 |
+
except Exception as e:
|
533 |
+
return f"Error analyzing image: {str(e)}"
|
534 |
+
|
535 |
+
def _analyze_list(self, list_data: str) -> str:
|
536 |
+
"""Analyze and categorize list items."""
|
537 |
+
if not list_data:
|
538 |
+
return "No list data provided."
|
539 |
+
try:
|
540 |
+
items = [x.strip() for x in list_data.split(",")]
|
541 |
+
if not items:
|
542 |
+
return "Please provide a comma-separated list of items."
|
543 |
+
# Add list analysis logic here
|
544 |
+
return "Please provide the list items for analysis."
|
545 |
+
except Exception as e:
|
546 |
+
return f"Error analyzing list: {str(e)}"
|
547 |
+
|
548 |
+
def _setup_llm(self):
|
549 |
+
"""Set up the language model."""
|
550 |
+
# Set up model with video capabilities
|
551 |
+
generation_config = {
|
552 |
+
"temperature": 0.0,
|
553 |
+
"max_output_tokens": 2000,
|
554 |
+
"candidate_count": 1,
|
555 |
+
}
|
556 |
+
|
557 |
+
safety_settings = {
|
558 |
+
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
559 |
+
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
560 |
+
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
561 |
+
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
562 |
+
}
|
563 |
+
|
564 |
+
return ChatGoogleGenerativeAI(
|
565 |
+
model="gemini-2.0-flash",
|
566 |
+
google_api_key=self.api_key,
|
567 |
+
temperature=0,
|
568 |
+
max_output_tokens=2000,
|
569 |
+
generation_config=generation_config,
|
570 |
+
safety_settings=safety_settings,
|
571 |
+
system_message=SystemMessage(
|
572 |
+
content=(
|
573 |
+
"You are a precise AI assistant that helps users find information and analyze content. "
|
574 |
+
"You can directly understand and analyze YouTube videos, images, and other content. "
|
575 |
+
"When analyzing videos, focus on relevant details like dialogue, text, and key visual elements. "
|
576 |
+
"For lists, tables, and structured data, ensure proper formatting and organization. "
|
577 |
+
"If you need additional context, clearly explain what is needed."
|
578 |
+
)
|
579 |
+
),
|
580 |
+
)
|
581 |
+
|
582 |
+
def _setup_agent(self) -> AgentExecutor:
|
583 |
+
"""Set up the agent with tools and system message."""
|
584 |
+
|
585 |
+
# Define the system message template
|
586 |
+
PREFIX = """You are a helpful AI assistant that can use various tools to answer questions and analyze content. You have access to tools for web search, Wikipedia lookup, and multimedia analysis.
|
587 |
+
|
588 |
+
TOOLS:
|
589 |
+
------
|
590 |
+
You have access to the following tools:"""
|
591 |
+
|
592 |
+
FORMAT_INSTRUCTIONS = """To use a tool, use the following format:
|
593 |
+
|
594 |
+
Thought: Do I need to use a tool? Yes
|
595 |
+
Action: the action to take, should be one of [{tool_names}]
|
596 |
+
Action Input: the input to the action
|
597 |
+
Observation: the result of the action
|
598 |
+
|
599 |
+
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
|
600 |
+
|
601 |
+
Thought: Do I need to use a tool? No
|
602 |
+
Final Answer: [your response here]
|
603 |
+
|
604 |
+
Begin! Remember to ALWAYS include 'Thought:', 'Action:', 'Action Input:', and 'Final Answer:' in your responses."""
|
605 |
+
|
606 |
+
SUFFIX = """Previous conversation history:
|
607 |
+
{chat_history}
|
608 |
+
|
609 |
+
New question: {input}
|
610 |
+
{agent_scratchpad}"""
|
611 |
+
|
612 |
+
# Create the base agent
|
613 |
+
agent = ConversationalAgent.from_llm_and_tools(
|
614 |
+
llm=self.llm,
|
615 |
+
tools=self.tools,
|
616 |
+
prefix=PREFIX,
|
617 |
+
format_instructions=FORMAT_INSTRUCTIONS,
|
618 |
+
suffix=SUFFIX,
|
619 |
+
input_variables=["input", "chat_history", "agent_scratchpad", "tool_names"],
|
620 |
+
handle_parsing_errors=True,
|
621 |
+
)
|
622 |
+
|
623 |
+
# Initialize agent executor with custom output handling
|
624 |
+
return AgentExecutor.from_agent_and_tools(
|
625 |
+
agent=agent,
|
626 |
+
tools=self.tools,
|
627 |
+
memory=self.memory,
|
628 |
+
max_iterations=5,
|
629 |
+
verbose=True,
|
630 |
+
handle_parsing_errors=True,
|
631 |
+
return_only_outputs=True, # This ensures we only get the final output
|
632 |
+
)
|
633 |
+
|
634 |
+
|
635 |
+
@tool
|
636 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
637 |
+
"""
|
638 |
+
Analyze a CSV file using pandas and answer a question about it.
|
639 |
+
|
640 |
+
Args:
|
641 |
+
file_path: Path to the CSV file
|
642 |
+
query: Question about the data
|
643 |
+
|
644 |
+
Returns:
|
645 |
+
Analysis result or error message
|
646 |
+
"""
|
647 |
+
try:
|
648 |
+
import pandas as pd
|
649 |
+
|
650 |
+
# Read the CSV file
|
651 |
+
df = pd.read_csv(file_path)
|
652 |
+
|
653 |
+
# Run various analyses based on the query
|
654 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
655 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
656 |
+
|
657 |
+
# Add summary statistics
|
658 |
+
result += "Summary statistics:\n"
|
659 |
+
result += str(df.describe())
|
660 |
+
|
661 |
+
return result
|
662 |
+
except ImportError:
|
663 |
+
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
664 |
+
except Exception as e:
|
665 |
+
return f"Error analyzing CSV file: {str(e)}"
|
666 |
+
|
667 |
+
|
668 |
+
@tool
|
669 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
670 |
+
"""
|
671 |
+
Analyze an Excel file using pandas and answer a question about it.
|
672 |
+
|
673 |
+
Args:
|
674 |
+
file_path: Path to the Excel file
|
675 |
+
query: Question about the data
|
676 |
+
|
677 |
+
Returns:
|
678 |
+
Analysis result or error message
|
679 |
+
"""
|
680 |
+
try:
|
681 |
+
import pandas as pd
|
682 |
+
|
683 |
+
# Read the Excel file
|
684 |
+
df = pd.read_excel(file_path)
|
685 |
+
|
686 |
+
# Run various analyses based on the query
|
687 |
+
result = (
|
688 |
+
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
689 |
+
)
|
690 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
691 |
+
|
692 |
+
# Add summary statistics
|
693 |
+
result += "Summary statistics:\n"
|
694 |
+
result += str(df.describe())
|
695 |
+
|
696 |
+
return result
|
697 |
+
except ImportError:
|
698 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
699 |
+
except Exception as e:
|
700 |
+
return f"Error analyzing Excel file: {str(e)}"
|
app.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import pandas as pd
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from agent_gemini import GeminiAgent
|
7 |
+
|
8 |
+
# Constants
|
9 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
+
|
11 |
+
|
12 |
+
class BasicAgent:
|
13 |
+
def __init__(self):
|
14 |
+
print("Initializing the BasicAgent")
|
15 |
+
|
16 |
+
# Get Gemini API key
|
17 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
18 |
+
if not api_key:
|
19 |
+
raise ValueError("GOOGLE_API_KEY environment variable not set.")
|
20 |
+
|
21 |
+
# Initialize GeminiAgent
|
22 |
+
self.agent = GeminiAgent(api_key=api_key)
|
23 |
+
print("GeminiAgent initialized successfully")
|
24 |
+
|
25 |
+
def __call__(self, question: str) -> str:
|
26 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
27 |
+
final_answer = self.agent.run(question)
|
28 |
+
print(f"Agent returning fixed answer: {final_answer}")
|
29 |
+
return final_answer
|
30 |
+
|
31 |
+
|
32 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
33 |
+
"""
|
34 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
35 |
+
and displays the results.
|
36 |
+
"""
|
37 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
38 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
39 |
+
|
40 |
+
if profile:
|
41 |
+
username = f"{profile.username}"
|
42 |
+
print(f"User logged in: {username}")
|
43 |
+
else:
|
44 |
+
print("User not logged in.")
|
45 |
+
return "Please Login to Hugging Face with the button.", None
|
46 |
+
|
47 |
+
api_url = DEFAULT_API_URL
|
48 |
+
questions_url = f"{api_url}/questions"
|
49 |
+
submit_url = f"{api_url}/submit"
|
50 |
+
|
51 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
52 |
+
try:
|
53 |
+
agent = BasicAgent()
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Error instantiating agent: {e}")
|
56 |
+
return f"Error initializing agent: {e}", None
|
57 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
58 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
59 |
+
print(agent_code)
|
60 |
+
|
61 |
+
# 2. Fetch Questions
|
62 |
+
print(f"Fetching questions from: {questions_url}")
|
63 |
+
try:
|
64 |
+
response = requests.get(questions_url, timeout=15)
|
65 |
+
response.raise_for_status()
|
66 |
+
questions_data = response.json()
|
67 |
+
if not questions_data:
|
68 |
+
print("Fetched questions list is empty.")
|
69 |
+
return "Fetched questions list is empty or invalid format.", None
|
70 |
+
print(f"Fetched {len(questions_data)} questions.")
|
71 |
+
except requests.exceptions.RequestException as e:
|
72 |
+
print(f"Error fetching questions: {e}")
|
73 |
+
return f"Error fetching questions: {e}", None
|
74 |
+
except requests.exceptions.JSONDecodeError as e:
|
75 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
76 |
+
print(f"Response text: {response.text[:500]}")
|
77 |
+
return f"Error decoding server response for questions: {e}", None
|
78 |
+
except Exception as e:
|
79 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
80 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
81 |
+
|
82 |
+
# 3. Run your Agent
|
83 |
+
results_log = []
|
84 |
+
answers_payload = []
|
85 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
86 |
+
for item in questions_data:
|
87 |
+
task_id = item.get("task_id")
|
88 |
+
question_text = item.get("question")
|
89 |
+
if not task_id or question_text is None:
|
90 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
91 |
+
continue
|
92 |
+
try:
|
93 |
+
submitted_answer = agent(question_text)
|
94 |
+
answers_payload.append(
|
95 |
+
{"task_id": task_id, "submitted_answer": submitted_answer}
|
96 |
+
)
|
97 |
+
results_log.append(
|
98 |
+
{
|
99 |
+
"Task ID": task_id,
|
100 |
+
"Question": question_text,
|
101 |
+
"Submitted Answer": submitted_answer,
|
102 |
+
}
|
103 |
+
)
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Error running agent on task {task_id}: {e}")
|
106 |
+
results_log.append(
|
107 |
+
{
|
108 |
+
"Task ID": task_id,
|
109 |
+
"Question": question_text,
|
110 |
+
"Submitted Answer": f"AGENT ERROR: {e}",
|
111 |
+
}
|
112 |
+
)
|
113 |
+
|
114 |
+
if not answers_payload:
|
115 |
+
print("Agent did not produce any answers to submit.")
|
116 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
117 |
+
|
118 |
+
# 4. Prepare Submission
|
119 |
+
submission_data = {
|
120 |
+
"username": username.strip(),
|
121 |
+
"agent_code": agent_code,
|
122 |
+
"answers": answers_payload,
|
123 |
+
}
|
124 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
125 |
+
print(status_update)
|
126 |
+
|
127 |
+
# 5. Submit
|
128 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
129 |
+
try:
|
130 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
131 |
+
response.raise_for_status()
|
132 |
+
result_data = response.json()
|
133 |
+
final_status = (
|
134 |
+
f"Submission Successful!\n"
|
135 |
+
f"User: {result_data.get('username')}\n"
|
136 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
137 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
138 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
139 |
+
)
|
140 |
+
print("Submission successful.")
|
141 |
+
results_df = pd.DataFrame(results_log)
|
142 |
+
return final_status, results_df
|
143 |
+
except requests.exceptions.HTTPError as e:
|
144 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
145 |
+
try:
|
146 |
+
error_json = e.response.json()
|
147 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
148 |
+
except requests.exceptions.JSONDecodeError:
|
149 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
150 |
+
status_message = f"Submission Failed: {error_detail}"
|
151 |
+
print(status_message)
|
152 |
+
results_df = pd.DataFrame(results_log)
|
153 |
+
return status_message, results_df
|
154 |
+
except requests.exceptions.Timeout:
|
155 |
+
status_message = "Submission Failed: The request timed out."
|
156 |
+
print(status_message)
|
157 |
+
results_df = pd.DataFrame(results_log)
|
158 |
+
return status_message, results_df
|
159 |
+
except requests.exceptions.RequestException as e:
|
160 |
+
status_message = f"Submission Failed: Network error - {e}"
|
161 |
+
print(status_message)
|
162 |
+
results_df = pd.DataFrame(results_log)
|
163 |
+
return status_message, results_df
|
164 |
+
except Exception as e:
|
165 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
166 |
+
print(status_message)
|
167 |
+
results_df = pd.DataFrame(results_log)
|
168 |
+
return status_message, results_df
|
169 |
+
|
170 |
+
|
171 |
+
# --- Build Gradio Interface using Blocks ---
|
172 |
+
with gr.Blocks() as demo:
|
173 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
174 |
+
gr.Markdown(
|
175 |
+
"""
|
176 |
+
**Instructions:**
|
177 |
+
|
178 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
179 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
180 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
181 |
+
|
182 |
+
---
|
183 |
+
**Disclaimers:**
|
184 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
185 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
186 |
+
"""
|
187 |
+
)
|
188 |
+
|
189 |
+
gr.LoginButton()
|
190 |
+
|
191 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
192 |
+
|
193 |
+
status_output = gr.Textbox(
|
194 |
+
label="Run Status / Submission Result", lines=5, interactive=False
|
195 |
+
)
|
196 |
+
# Removed max_rows=10 from DataFrame constructor
|
197 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
198 |
+
|
199 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
200 |
+
|
201 |
+
if __name__ == "__main__":
|
202 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
203 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
204 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
205 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
206 |
+
|
207 |
+
if space_host_startup:
|
208 |
+
print(f"β
SPACE_HOST found: {space_host_startup}")
|
209 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
210 |
+
else:
|
211 |
+
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
212 |
+
|
213 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
214 |
+
print(f"β
SPACE_ID found: {space_id_startup}")
|
215 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
216 |
+
print(
|
217 |
+
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
|
218 |
+
)
|
219 |
+
else:
|
220 |
+
print(
|
221 |
+
"βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
|
222 |
+
)
|
223 |
+
|
224 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
225 |
+
|
226 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
227 |
+
demo.launch(debug=True, share=False)
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
langchain>=0.1.0
|
3 |
+
langchain-core>=0.1.0
|
4 |
+
langchain-community>=0.0.10
|
5 |
+
langchain-google-genai>=0.0.6
|
6 |
+
google-generativeai>=0.3.0
|
7 |
+
python-dotenv>=1.0.0
|
8 |
+
google-api-python-client>=2.108.0
|
9 |
+
duckduckgo-search>=4.4
|
10 |
+
tiktoken>=0.5.2
|
11 |
+
google-cloud-speech>=2.24.0
|
12 |
+
requests>=2.31.0
|
13 |
+
pydub>=0.25.1
|
14 |
+
yt-dlp>=2023.12.30
|
15 |
+
smolagents>=0.1.3
|
16 |
+
wikipedia>=1.4.0
|
17 |
+
Pillow>=10.2.0
|
18 |
+
wikipedia-api>=0.6.0
|
system_prompt.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
2 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
3 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
4 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
5 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|