Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,15 @@ import numpy as np
|
|
9 |
from PIL import Image
|
10 |
import spaces
|
11 |
import torch
|
12 |
-
from diffusers import
|
13 |
-
|
|
|
|
|
|
|
14 |
DESCRIPTION = """
|
15 |
-
#
|
16 |
|
17 |
-
Model by [
|
18 |
|
19 |
Demo by [ehristoforu](https://huggingface.co/ehristoforu)
|
20 |
"""
|
@@ -29,27 +32,19 @@ ENABLE_CPU_OFFLOAD = 0
|
|
29 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
30 |
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
if ENABLE_CPU_OFFLOAD:
|
38 |
-
pipe.enable_model_cpu_offload()
|
39 |
-
else:
|
40 |
-
vae = AutoencoderKL.from_pretrained(
|
41 |
-
"madebyollin/sdxl-vae-fp16-fix",
|
42 |
-
torch_dtype=torch.float16
|
43 |
-
)
|
44 |
-
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
45 |
-
pipe.to(device)
|
46 |
-
print("Loaded on Device!")
|
47 |
-
pipe.load_lora_weights("stabilityai/stable-diffusion-xl-base-1.0", weight_name="sd_xl_offset_example-lora_1.0.safetensors")
|
48 |
-
pipe.fuse_lora(lora_scale=0.1)
|
49 |
-
if USE_TORCH_COMPILE:
|
50 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
51 |
-
print("Model Compiled!")
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def save_image(img):
|
55 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -87,7 +82,7 @@ def generate(
|
|
87 |
width=width,
|
88 |
height=height,
|
89 |
guidance_scale=guidance_scale,
|
90 |
-
num_inference_steps=
|
91 |
num_images_per_prompt=1,
|
92 |
output_type="pil",
|
93 |
).images
|
@@ -115,7 +110,7 @@ footer {
|
|
115 |
visibility: hidden
|
116 |
}
|
117 |
'''
|
118 |
-
with gr.Blocks(title="
|
119 |
gr.Markdown(DESCRIPTION)
|
120 |
gr.DuplicateButton(
|
121 |
value="Duplicate Space for private use",
|
@@ -157,14 +152,14 @@ with gr.Blocks(title="Proteus V0.3", css=css) as demo:
|
|
157 |
minimum=512,
|
158 |
maximum=1536,
|
159 |
step=8,
|
160 |
-
value=
|
161 |
)
|
162 |
height = gr.Slider(
|
163 |
label="Height",
|
164 |
minimum=512,
|
165 |
maximum=1536,
|
166 |
step=8,
|
167 |
-
value=
|
168 |
)
|
169 |
with gr.Row():
|
170 |
guidance_scale = gr.Slider(
|
|
|
9 |
from PIL import Image
|
10 |
import spaces
|
11 |
import torch
|
12 |
+
from diffusers import (
|
13 |
+
StableDiffusionXLPipeline,
|
14 |
+
KDPM2AncestralDiscreteScheduler,
|
15 |
+
AutoencoderKL
|
16 |
+
)
|
17 |
DESCRIPTION = """
|
18 |
+
# Mobius
|
19 |
|
20 |
+
Model by [Corcel.io](https://huggingface.co/Corcelio/mobius)
|
21 |
|
22 |
Demo by [ehristoforu](https://huggingface.co/ehristoforu)
|
23 |
"""
|
|
|
32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
33 |
|
34 |
|
35 |
+
vae = AutoencoderKL.from_pretrained(
|
36 |
+
"madebyollin/sdxl-vae-fp16-fix",
|
37 |
+
torch_dtype=torch.float16
|
38 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Configure the pipeline
|
41 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
42 |
+
"Corcelio/mobius",
|
43 |
+
vae=vae,
|
44 |
+
torch_dtype=torch.float16
|
45 |
+
)
|
46 |
+
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
47 |
+
pipe.to('cuda')
|
48 |
|
49 |
def save_image(img):
|
50 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
82 |
width=width,
|
83 |
height=height,
|
84 |
guidance_scale=guidance_scale,
|
85 |
+
num_inference_steps=25,
|
86 |
num_images_per_prompt=1,
|
87 |
output_type="pil",
|
88 |
).images
|
|
|
110 |
visibility: hidden
|
111 |
}
|
112 |
'''
|
113 |
+
with gr.Blocks(title="Mobius", css=css) as demo:
|
114 |
gr.Markdown(DESCRIPTION)
|
115 |
gr.DuplicateButton(
|
116 |
value="Duplicate Space for private use",
|
|
|
152 |
minimum=512,
|
153 |
maximum=1536,
|
154 |
step=8,
|
155 |
+
value=1024,
|
156 |
)
|
157 |
height = gr.Slider(
|
158 |
label="Height",
|
159 |
minimum=512,
|
160 |
maximum=1536,
|
161 |
step=8,
|
162 |
+
value=1024,
|
163 |
)
|
164 |
with gr.Row():
|
165 |
guidance_scale = gr.Slider(
|