Spaces:
Runtime error
Runtime error
Commit
Β·
b445efe
1
Parent(s):
35eb40e
feat: Add validation to check if data exists before pushing/generating
Browse files
src/distilabel_dataset_generator/apps/sft.py
CHANGED
|
@@ -267,17 +267,19 @@ def push_to_argilla(
|
|
| 267 |
),
|
| 268 |
],
|
| 269 |
questions=[
|
| 270 |
-
rg.
|
| 271 |
-
name="
|
| 272 |
-
description="The
|
|
|
|
| 273 |
),
|
| 274 |
],
|
| 275 |
metadata=[
|
| 276 |
rg.IntegerMetadataProperty(
|
| 277 |
-
name="
|
| 278 |
),
|
| 279 |
rg.IntegerMetadataProperty(
|
| 280 |
-
name="
|
|
|
|
| 281 |
),
|
| 282 |
],
|
| 283 |
vectors=[
|
|
@@ -288,25 +290,28 @@ def push_to_argilla(
|
|
| 288 |
],
|
| 289 |
guidelines="Please review the conversation and provide a score for the assistant's response.",
|
| 290 |
)
|
| 291 |
-
import pdb
|
| 292 |
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
)
|
| 297 |
dataframe["messages_embeddings"] = get_embeddings(
|
| 298 |
dataframe["messages"].apply(
|
| 299 |
lambda x: " ".join([y["content"] for y in x])
|
| 300 |
)
|
| 301 |
)
|
| 302 |
-
dataframe["correct_response"] = dataframe["messages"].apply(
|
| 303 |
-
lambda x: x[-1]["content"]
|
| 304 |
-
)
|
| 305 |
-
dataframe["response_length"] = dataframe["correct_response"].apply(len)
|
| 306 |
-
dataframe["messages"] = dataframe["messages"].apply(lambda x: x[:-1])
|
| 307 |
else:
|
| 308 |
settings = rg.Settings(
|
| 309 |
fields=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
rg.TextField(
|
| 311 |
name="prompt",
|
| 312 |
description="The prompt used for the conversation",
|
|
@@ -317,13 +322,10 @@ def push_to_argilla(
|
|
| 317 |
),
|
| 318 |
],
|
| 319 |
questions=[
|
| 320 |
-
rg.
|
| 321 |
-
name="
|
| 322 |
-
description="The
|
| 323 |
-
|
| 324 |
-
rg.TextQuestion(
|
| 325 |
-
name="correct_completion",
|
| 326 |
-
description="The corrected completion from the assistant",
|
| 327 |
),
|
| 328 |
],
|
| 329 |
metadata=[
|
|
@@ -342,22 +344,20 @@ def push_to_argilla(
|
|
| 342 |
],
|
| 343 |
guidelines="Please review the conversation and correct the prompt and completion where needed.",
|
| 344 |
)
|
| 345 |
-
dataframe["correct_prompt"] = dataframe["prompt"]
|
| 346 |
-
dataframe["correct_completion"] = dataframe["completion"]
|
| 347 |
dataframe["prompt_length"] = dataframe["prompt"].apply(len)
|
| 348 |
dataframe["completion_length"] = dataframe["completion"].apply(len)
|
| 349 |
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"])
|
| 350 |
|
| 351 |
progress(0.5, desc="Creating dataset")
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
progress(0.7, desc="Pushing dataset to Argilla")
|
| 362 |
hf_dataset = Dataset.from_pandas(dataframe)
|
| 363 |
rg_dataset.records.log(records=hf_dataset)
|
|
@@ -367,6 +367,23 @@ def push_to_argilla(
|
|
| 367 |
return original_dataframe
|
| 368 |
|
| 369 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
def upload_pipeline_code(
|
| 371 |
pipeline_code,
|
| 372 |
org_name,
|
|
@@ -469,7 +486,7 @@ with gr.Blocks(
|
|
| 469 |
# Add a header for the full dataset generation section
|
| 470 |
gr.Markdown("## Generate full dataset")
|
| 471 |
gr.Markdown(
|
| 472 |
-
"Once you're satisfied with the sample, generate a larger dataset and push it to the Hub."
|
| 473 |
)
|
| 474 |
|
| 475 |
with gr.Column() as push_to_hub_ui:
|
|
@@ -489,22 +506,31 @@ with gr.Blocks(
|
|
| 489 |
maximum=500,
|
| 490 |
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
| 491 |
)
|
|
|
|
| 492 |
with gr.Tab(label="Argilla"):
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
)
|
| 509 |
with gr.Tab("Hugging Face Hub"):
|
| 510 |
with gr.Row(variant="panel"):
|
|
@@ -554,10 +580,10 @@ with gr.Blocks(
|
|
| 554 |
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
|
| 555 |
{argilla_api_url}
|
| 556 |
</a>
|
| 557 |
-
Here are some docs to help you:
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
</p>
|
| 562 |
</div>
|
| 563 |
""",
|
|
@@ -621,14 +647,19 @@ with gr.Blocks(
|
|
| 621 |
)
|
| 622 |
|
| 623 |
btn_generate_and_push_to_argilla.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 624 |
fn=hide_success_message,
|
| 625 |
outputs=[success_message],
|
| 626 |
-
).
|
| 627 |
fn=generate_dataset,
|
| 628 |
inputs=[system_prompt, num_turns, num_rows],
|
| 629 |
outputs=[final_dataset],
|
| 630 |
show_progress=True,
|
| 631 |
-
).
|
| 632 |
fn=push_to_argilla,
|
| 633 |
inputs=[final_dataset, dataset_name],
|
| 634 |
outputs=[final_dataset],
|
|
@@ -685,7 +716,12 @@ with gr.Blocks(
|
|
| 685 |
btn_push_to_argilla.click(
|
| 686 |
fn=hide_success_message,
|
| 687 |
outputs=[success_message],
|
| 688 |
-
).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 689 |
fn=push_to_argilla,
|
| 690 |
inputs=[final_dataset, dataset_name],
|
| 691 |
outputs=[final_dataset],
|
|
|
|
| 267 |
),
|
| 268 |
],
|
| 269 |
questions=[
|
| 270 |
+
rg.RatingQuestion(
|
| 271 |
+
name="rating",
|
| 272 |
+
description="The rating of the conversation",
|
| 273 |
+
values=list(range(1, 6)),
|
| 274 |
),
|
| 275 |
],
|
| 276 |
metadata=[
|
| 277 |
rg.IntegerMetadataProperty(
|
| 278 |
+
name="user_message_length", title="User Message Length"
|
| 279 |
),
|
| 280 |
rg.IntegerMetadataProperty(
|
| 281 |
+
name="assistant_message_length",
|
| 282 |
+
title="Assistant Message Length",
|
| 283 |
),
|
| 284 |
],
|
| 285 |
vectors=[
|
|
|
|
| 290 |
],
|
| 291 |
guidelines="Please review the conversation and provide a score for the assistant's response.",
|
| 292 |
)
|
|
|
|
| 293 |
|
| 294 |
+
dataframe["user_message_length"] = dataframe["messages"].apply(
|
| 295 |
+
lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"])
|
| 296 |
+
)
|
| 297 |
+
dataframe["assistant_message_length"] = dataframe["messages"].apply(
|
| 298 |
+
lambda x: sum(
|
| 299 |
+
[len(y["content"]) for y in x if y["role"] == "assistant"]
|
| 300 |
+
)
|
| 301 |
)
|
| 302 |
dataframe["messages_embeddings"] = get_embeddings(
|
| 303 |
dataframe["messages"].apply(
|
| 304 |
lambda x: " ".join([y["content"] for y in x])
|
| 305 |
)
|
| 306 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
else:
|
| 308 |
settings = rg.Settings(
|
| 309 |
fields=[
|
| 310 |
+
rg.TextField(
|
| 311 |
+
name="system_prompt",
|
| 312 |
+
description="The system prompt used for the conversation",
|
| 313 |
+
required=False,
|
| 314 |
+
),
|
| 315 |
rg.TextField(
|
| 316 |
name="prompt",
|
| 317 |
description="The prompt used for the conversation",
|
|
|
|
| 322 |
),
|
| 323 |
],
|
| 324 |
questions=[
|
| 325 |
+
rg.RatingQuestion(
|
| 326 |
+
name="rating",
|
| 327 |
+
description="The rating of the conversation",
|
| 328 |
+
values=list(range(1, 6)),
|
|
|
|
|
|
|
|
|
|
| 329 |
),
|
| 330 |
],
|
| 331 |
metadata=[
|
|
|
|
| 344 |
],
|
| 345 |
guidelines="Please review the conversation and correct the prompt and completion where needed.",
|
| 346 |
)
|
|
|
|
|
|
|
| 347 |
dataframe["prompt_length"] = dataframe["prompt"].apply(len)
|
| 348 |
dataframe["completion_length"] = dataframe["completion"].apply(len)
|
| 349 |
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"])
|
| 350 |
|
| 351 |
progress(0.5, desc="Creating dataset")
|
| 352 |
+
rg_dataset = client.datasets(name=dataset_name, workspace=rg_user.username)
|
| 353 |
+
if rg_dataset is None:
|
| 354 |
+
rg_dataset = rg.Dataset(
|
| 355 |
+
name=dataset_name,
|
| 356 |
+
workspace=rg_user.username,
|
| 357 |
+
settings=settings,
|
| 358 |
+
client=client,
|
| 359 |
+
)
|
| 360 |
+
rg_dataset = rg_dataset.create()
|
| 361 |
progress(0.7, desc="Pushing dataset to Argilla")
|
| 362 |
hf_dataset = Dataset.from_pandas(dataframe)
|
| 363 |
rg_dataset.records.log(records=hf_dataset)
|
|
|
|
| 367 |
return original_dataframe
|
| 368 |
|
| 369 |
|
| 370 |
+
def validate_argilla_dataset_name(
|
| 371 |
+
dataset_name: str,
|
| 372 |
+
final_dataset: pd.DataFrame,
|
| 373 |
+
oauth_token: Union[OAuthToken, None] = None,
|
| 374 |
+
progress=gr.Progress(),
|
| 375 |
+
) -> str:
|
| 376 |
+
progress(0, desc="Validating dataset configuration")
|
| 377 |
+
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
|
| 378 |
+
client = get_argilla_client()
|
| 379 |
+
if dataset_name is None or dataset_name == "":
|
| 380 |
+
raise gr.Error("Dataset name is required")
|
| 381 |
+
dataset = client.datasets(name=dataset_name, workspace=hf_user)
|
| 382 |
+
if dataset:
|
| 383 |
+
raise gr.Error(f"Dataset {dataset_name} already exists")
|
| 384 |
+
return final_dataset
|
| 385 |
+
|
| 386 |
+
|
| 387 |
def upload_pipeline_code(
|
| 388 |
pipeline_code,
|
| 389 |
org_name,
|
|
|
|
| 486 |
# Add a header for the full dataset generation section
|
| 487 |
gr.Markdown("## Generate full dataset")
|
| 488 |
gr.Markdown(
|
| 489 |
+
"Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub."
|
| 490 |
)
|
| 491 |
|
| 492 |
with gr.Column() as push_to_hub_ui:
|
|
|
|
| 506 |
maximum=500,
|
| 507 |
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
| 508 |
)
|
| 509 |
+
|
| 510 |
with gr.Tab(label="Argilla"):
|
| 511 |
+
if get_argilla_client():
|
| 512 |
+
with gr.Row(variant="panel"):
|
| 513 |
+
dataset_name = gr.Textbox(
|
| 514 |
+
label="Dataset name",
|
| 515 |
+
placeholder="dataset_name",
|
| 516 |
+
value="my-distiset",
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
with gr.Row(variant="panel"):
|
| 520 |
+
btn_generate_full_dataset_copy = gr.Button(
|
| 521 |
+
value="Generate", variant="primary", scale=2
|
| 522 |
+
)
|
| 523 |
+
btn_generate_and_push_to_argilla = gr.Button(
|
| 524 |
+
value="Generate and Push to Argilla",
|
| 525 |
+
variant="primary",
|
| 526 |
+
scale=2,
|
| 527 |
+
)
|
| 528 |
+
btn_push_to_argilla = gr.Button(
|
| 529 |
+
value="Push to Argilla", variant="primary", scale=2
|
| 530 |
+
)
|
| 531 |
+
else:
|
| 532 |
+
gr.Markdown(
|
| 533 |
+
"Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla."
|
| 534 |
)
|
| 535 |
with gr.Tab("Hugging Face Hub"):
|
| 536 |
with gr.Row(variant="panel"):
|
|
|
|
| 580 |
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
|
| 581 |
{argilla_api_url}
|
| 582 |
</a>
|
| 583 |
+
<br>Unfamiliar with Argilla? Here are some docs to help you get started:
|
| 584 |
+
<br>β’ <a href="https://docs.argilla.io/latest/getting_started/quickstart/#sign-in-into-the-argilla-ui" target="_blank">Login with OAuth</a>
|
| 585 |
+
<br>β’ <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">Curate your data</a>
|
| 586 |
+
<br>β’ <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">Export your data</a>
|
| 587 |
</p>
|
| 588 |
</div>
|
| 589 |
""",
|
|
|
|
| 647 |
)
|
| 648 |
|
| 649 |
btn_generate_and_push_to_argilla.click(
|
| 650 |
+
fn=validate_argilla_dataset_name,
|
| 651 |
+
inputs=[dataset_name, final_dataset],
|
| 652 |
+
outputs=[final_dataset],
|
| 653 |
+
show_progress=True,
|
| 654 |
+
).success(
|
| 655 |
fn=hide_success_message,
|
| 656 |
outputs=[success_message],
|
| 657 |
+
).success(
|
| 658 |
fn=generate_dataset,
|
| 659 |
inputs=[system_prompt, num_turns, num_rows],
|
| 660 |
outputs=[final_dataset],
|
| 661 |
show_progress=True,
|
| 662 |
+
).success(
|
| 663 |
fn=push_to_argilla,
|
| 664 |
inputs=[final_dataset, dataset_name],
|
| 665 |
outputs=[final_dataset],
|
|
|
|
| 716 |
btn_push_to_argilla.click(
|
| 717 |
fn=hide_success_message,
|
| 718 |
outputs=[success_message],
|
| 719 |
+
).success(
|
| 720 |
+
fn=validate_argilla_dataset_name,
|
| 721 |
+
inputs=[dataset_name, final_dataset],
|
| 722 |
+
outputs=[final_dataset],
|
| 723 |
+
show_progress=True,
|
| 724 |
+
).success(
|
| 725 |
fn=push_to_argilla,
|
| 726 |
inputs=[final_dataset, dataset_name],
|
| 727 |
outputs=[final_dataset],
|
src/distilabel_dataset_generator/pipelines/sft.py
CHANGED
|
@@ -189,7 +189,7 @@ with Pipeline(name="sft") as pipeline:
|
|
| 189 |
tokenizer_id=MODEL,
|
| 190 |
magpie_pre_query_template="llama3",
|
| 191 |
generation_kwargs={{
|
| 192 |
-
"temperature":
|
| 193 |
"do_sample": True,
|
| 194 |
"max_new_tokens": 2048,
|
| 195 |
"stop_sequences": {_STOP_SEQUENCES}
|
|
@@ -231,7 +231,7 @@ def get_magpie_generator(num_turns, num_rows, system_prompt, is_sample):
|
|
| 231 |
api_key=_get_next_api_key(),
|
| 232 |
magpie_pre_query_template="llama3",
|
| 233 |
generation_kwargs={
|
| 234 |
-
"temperature":
|
| 235 |
"do_sample": True,
|
| 236 |
"max_new_tokens": 256 if is_sample else 512,
|
| 237 |
"stop_sequences": _STOP_SEQUENCES,
|
|
@@ -250,7 +250,7 @@ def get_magpie_generator(num_turns, num_rows, system_prompt, is_sample):
|
|
| 250 |
api_key=_get_next_api_key(),
|
| 251 |
magpie_pre_query_template="llama3",
|
| 252 |
generation_kwargs={
|
| 253 |
-
"temperature":
|
| 254 |
"do_sample": True,
|
| 255 |
"max_new_tokens": 256 if is_sample else 1024,
|
| 256 |
"stop_sequences": _STOP_SEQUENCES,
|
|
|
|
| 189 |
tokenizer_id=MODEL,
|
| 190 |
magpie_pre_query_template="llama3",
|
| 191 |
generation_kwargs={{
|
| 192 |
+
"temperature": 1,
|
| 193 |
"do_sample": True,
|
| 194 |
"max_new_tokens": 2048,
|
| 195 |
"stop_sequences": {_STOP_SEQUENCES}
|
|
|
|
| 231 |
api_key=_get_next_api_key(),
|
| 232 |
magpie_pre_query_template="llama3",
|
| 233 |
generation_kwargs={
|
| 234 |
+
"temperature": 1,
|
| 235 |
"do_sample": True,
|
| 236 |
"max_new_tokens": 256 if is_sample else 512,
|
| 237 |
"stop_sequences": _STOP_SEQUENCES,
|
|
|
|
| 250 |
api_key=_get_next_api_key(),
|
| 251 |
magpie_pre_query_template="llama3",
|
| 252 |
generation_kwargs={
|
| 253 |
+
"temperature": 1,
|
| 254 |
"do_sample": True,
|
| 255 |
"max_new_tokens": 256 if is_sample else 1024,
|
| 256 |
"stop_sequences": _STOP_SEQUENCES,
|
src/distilabel_dataset_generator/utils.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
|
| 3 |
import argilla as rg
|
| 4 |
import gradio as gr
|
|
@@ -84,10 +85,13 @@ def swap_visibilty(oauth_token: OAuthToken = None):
|
|
| 84 |
return gr.update(elem_classes=["main_ui_logged_out"])
|
| 85 |
|
| 86 |
|
| 87 |
-
def get_argilla_client():
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
from typing import Union
|
| 3 |
|
| 4 |
import argilla as rg
|
| 5 |
import gradio as gr
|
|
|
|
| 85 |
return gr.update(elem_classes=["main_ui_logged_out"])
|
| 86 |
|
| 87 |
|
| 88 |
+
def get_argilla_client() -> Union[rg.Argilla, None]:
|
| 89 |
+
try:
|
| 90 |
+
return rg.Argilla(
|
| 91 |
+
api_url=os.getenv("ARGILLA_API_URL_SDG_REVIEWER")
|
| 92 |
+
or os.getenv("ARGILLA_API_URL"),
|
| 93 |
+
api_key=os.getenv("ARGILLA_API_KEY_SDG_REVIEWER")
|
| 94 |
+
or os.getenv("ARGILLA_API_KEY"),
|
| 95 |
+
)
|
| 96 |
+
except Exception:
|
| 97 |
+
return None
|