Spaces:
Sleeping
Sleeping
Commit
·
ca8e3d9
1
Parent(s):
a89d907
format
Browse files
dist.py
CHANGED
@@ -6,54 +6,58 @@ This module provides functions to calculate Levenshtein (edit) distance between
|
|
6 |
two sequences (strings or bytes) with support for wildcard positions.
|
7 |
"""
|
8 |
|
|
|
9 |
def ensure_same_type(seq1, seq2):
|
10 |
"""
|
11 |
Ensure both sequences are the same type (both str or both bytes).
|
12 |
-
|
13 |
Args:
|
14 |
seq1: First sequence (str or bytes)
|
15 |
seq2: Second sequence (str or bytes)
|
16 |
-
|
17 |
Returns:
|
18 |
Tuple of (seq1, seq2) with consistent types
|
19 |
"""
|
20 |
if isinstance(seq1, str) and isinstance(seq2, bytes):
|
21 |
-
seq2 = seq2.decode(
|
22 |
elif isinstance(seq1, bytes) and isinstance(seq2, str):
|
23 |
-
seq2 = seq2.encode(
|
24 |
return seq1, seq2
|
25 |
|
|
|
26 |
def to_bytes(s):
|
27 |
"""
|
28 |
Convert a sequence to bytes if it's a string, otherwise return as is.
|
29 |
-
|
30 |
Args:
|
31 |
s: The sequence to convert (str or bytes)
|
32 |
-
|
33 |
Returns:
|
34 |
bytes: The input converted to bytes if it was a string
|
35 |
"""
|
36 |
-
return s.encode(
|
|
|
37 |
|
38 |
def to_str(s):
|
39 |
"""
|
40 |
Convert a sequence to string if it's bytes, otherwise return as is.
|
41 |
-
|
42 |
Args:
|
43 |
s: The sequence to convert (str or bytes)
|
44 |
-
|
45 |
Returns:
|
46 |
str: The input converted to string if it was bytes
|
47 |
"""
|
48 |
-
return s.decode(
|
|
|
49 |
|
50 |
def get_element_repr(element):
|
51 |
"""
|
52 |
Get a human-readable representation of a sequence element.
|
53 |
-
|
54 |
Args:
|
55 |
element: A single element from a sequence (byte or character)
|
56 |
-
|
57 |
Returns:
|
58 |
str: A printable representation of the element
|
59 |
"""
|
@@ -63,18 +67,21 @@ def get_element_repr(element):
|
|
63 |
return f"0x{element:02x}"
|
64 |
return repr(element) # For str objects
|
65 |
|
66 |
-
|
|
|
|
|
|
|
67 |
"""
|
68 |
Calculate the Levenshtein distance between two sequences with support for wildcards.
|
69 |
Works with both strings and bytes.
|
70 |
-
|
71 |
Args:
|
72 |
seq1: First sequence (str or bytes)
|
73 |
seq2: Second sequence (str or bytes)
|
74 |
wildcard_offsets_seq1 (iterable, optional): Indices in seq1 that are wildcards. Defaults to None.
|
75 |
wildcard_offsets_seq2 (iterable, optional): Indices in seq2 that are wildcards. Defaults to None.
|
76 |
verbose (bool, optional): If True, returns additional information about operations. Defaults to False.
|
77 |
-
|
78 |
Returns:
|
79 |
int: The Levenshtein distance between the two sequences.
|
80 |
list: If verbose=True, also returns a list of operations performed.
|
@@ -82,78 +89,81 @@ def levenshtein_with_wildcard(seq1, seq2, wildcard_offsets_seq1=None, wildcard_o
|
|
82 |
# Initialize empty sets if None
|
83 |
wildcard_offsets_seq1 = set(wildcard_offsets_seq1 or [])
|
84 |
wildcard_offsets_seq2 = set(wildcard_offsets_seq2 or [])
|
85 |
-
|
86 |
m, n = len(seq1), len(seq2)
|
87 |
-
|
88 |
# Create a matrix of size (m+1) x (n+1)
|
89 |
dp = [[0] * (n + 1) for _ in range(m + 1)]
|
90 |
-
|
91 |
# Initialize the first row and column
|
92 |
for i in range(m + 1):
|
93 |
dp[i][0] = i
|
94 |
-
|
95 |
for j in range(n + 1):
|
96 |
dp[0][j] = j
|
97 |
-
|
98 |
# Fill the dp matrix
|
99 |
for i in range(1, m + 1):
|
100 |
for j in range(1, n + 1):
|
101 |
# Check if either position is a wildcard
|
102 |
is_seq1_wildcard = (i - 1) in wildcard_offsets_seq1
|
103 |
is_seq2_wildcard = (j - 1) in wildcard_offsets_seq2
|
104 |
-
|
105 |
# If either position is a wildcard, treat it as a match (cost = 0)
|
106 |
if is_seq1_wildcard or is_seq2_wildcard:
|
107 |
dp[i][j] = dp[i - 1][j - 1] # No cost for wildcard matches
|
108 |
else:
|
109 |
cost = 0 if seq1[i - 1] == seq2[j - 1] else 1
|
110 |
dp[i][j] = min(
|
111 |
-
dp[i - 1][j] + 1,
|
112 |
-
dp[i][j - 1] + 1,
|
113 |
-
dp[i - 1][j - 1] + cost # substitution
|
114 |
)
|
115 |
-
|
116 |
if verbose:
|
117 |
-
operations = explain_match(
|
|
|
|
|
118 |
return dp[m][n], operations
|
119 |
-
|
120 |
return dp[m][n]
|
121 |
|
|
|
122 |
def explain_match(seq1, seq2, dp, wildcard_offsets_seq1, wildcard_offsets_seq2):
|
123 |
"""
|
124 |
Traces the optimal alignment path and explains each step of the matching process.
|
125 |
-
|
126 |
Args:
|
127 |
seq1: First sequence (str or bytes)
|
128 |
seq2: Second sequence (str or bytes)
|
129 |
dp (list): The dynamic programming matrix.
|
130 |
wildcard_offsets_seq1 (set): Indices in seq1 that are wildcards.
|
131 |
wildcard_offsets_seq2 (set): Indices in seq2 that are wildcards.
|
132 |
-
|
133 |
Returns:
|
134 |
list: A list of explanation strings for each operation performed.
|
135 |
"""
|
136 |
m, n = len(seq1), len(seq2)
|
137 |
operations = []
|
138 |
-
|
139 |
# Find the optimal path
|
140 |
i, j = m, n
|
141 |
path = []
|
142 |
-
|
143 |
while i > 0 or j > 0:
|
144 |
path.append((i, j))
|
145 |
-
|
146 |
if i == 0:
|
147 |
j -= 1
|
148 |
elif j == 0:
|
149 |
i -= 1
|
150 |
else:
|
151 |
-
substitution_cost = dp[i-1][j-1]
|
152 |
-
deletion_cost = dp[i-1][j]
|
153 |
-
insertion_cost = dp[i][j-1]
|
154 |
-
|
155 |
min_cost = min(substitution_cost, deletion_cost, insertion_cost)
|
156 |
-
|
157 |
if min_cost == substitution_cost:
|
158 |
i -= 1
|
159 |
j -= 1
|
@@ -161,130 +171,153 @@ def explain_match(seq1, seq2, dp, wildcard_offsets_seq1, wildcard_offsets_seq2):
|
|
161 |
i -= 1
|
162 |
else:
|
163 |
j -= 1
|
164 |
-
|
165 |
path.append((0, 0))
|
166 |
path.reverse()
|
167 |
-
|
168 |
# Generate explanations for each step
|
169 |
for idx in range(1, len(path)):
|
170 |
-
prev_i, prev_j = path[idx-1]
|
171 |
curr_i, curr_j = path[idx]
|
172 |
-
|
173 |
# Diagonal move (match or substitution)
|
174 |
if curr_i > prev_i and curr_j > prev_j:
|
175 |
-
char1_idx = curr_i-1
|
176 |
-
char2_idx = curr_j-1
|
177 |
char1 = seq1[char1_idx]
|
178 |
char2 = seq2[char2_idx]
|
179 |
-
|
180 |
is_seq1_wildcard = char1_idx in wildcard_offsets_seq1
|
181 |
is_seq2_wildcard = char2_idx in wildcard_offsets_seq2
|
182 |
-
|
183 |
char1_repr = get_element_repr(char1)
|
184 |
char2_repr = get_element_repr(char2)
|
185 |
-
|
186 |
if is_seq1_wildcard and is_seq2_wildcard:
|
187 |
-
operations.append(
|
|
|
|
|
188 |
elif is_seq1_wildcard:
|
189 |
-
operations.append(
|
|
|
|
|
190 |
elif is_seq2_wildcard:
|
191 |
-
operations.append(
|
|
|
|
|
192 |
elif char1 == char2:
|
193 |
-
operations.append(
|
|
|
|
|
194 |
else:
|
195 |
-
operations.append(
|
196 |
-
|
|
|
|
|
197 |
# Horizontal move (insertion)
|
198 |
elif curr_i == prev_i and curr_j > prev_j:
|
199 |
-
char_idx = curr_j-1
|
200 |
char_repr = get_element_repr(seq2[char_idx])
|
201 |
-
operations.append(
|
202 |
-
|
|
|
|
|
203 |
# Vertical move (deletion)
|
204 |
elif curr_i > prev_i and curr_j == prev_j:
|
205 |
-
char_idx = curr_i-1
|
206 |
char_repr = get_element_repr(seq1[char_idx])
|
207 |
-
operations.append(
|
208 |
-
|
|
|
|
|
209 |
return operations
|
210 |
|
|
|
211 |
def create_gap_element(sequence):
|
212 |
"""
|
213 |
Create a gap element compatible with the sequence type.
|
214 |
-
|
215 |
Args:
|
216 |
sequence: The sequence (str or bytes) to create a gap for
|
217 |
-
|
218 |
Returns:
|
219 |
The appropriate gap element for the sequence type
|
220 |
"""
|
221 |
if isinstance(sequence, bytes):
|
222 |
-
return b
|
223 |
else:
|
224 |
-
return
|
225 |
|
226 |
-
|
|
|
|
|
|
|
227 |
"""
|
228 |
Prints a summary of the match between two sequences, highlighting wildcards by their offsets.
|
229 |
Works with both strings and bytes.
|
230 |
-
|
231 |
Args:
|
232 |
seq1: First sequence (str or bytes)
|
233 |
seq2: Second sequence (str or bytes)
|
234 |
wildcard_offsets_seq1 (iterable, optional): Indices in seq1 that are wildcards. Defaults to None.
|
235 |
wildcard_offsets_seq2 (iterable, optional): Indices in seq2 that are wildcards. Defaults to None.
|
236 |
-
|
237 |
Returns:
|
238 |
tuple: (distance, operations) The edit distance and list of operations
|
239 |
"""
|
240 |
# Ensure sequences are of the same type for comparison
|
241 |
seq1, seq2 = ensure_same_type(seq1, seq2)
|
242 |
-
|
243 |
# Initialize empty sets if None
|
244 |
wildcard_offsets_seq1 = set(wildcard_offsets_seq1 or [])
|
245 |
wildcard_offsets_seq2 = set(wildcard_offsets_seq2 or [])
|
246 |
-
|
247 |
distance, operations = levenshtein_with_wildcard(
|
248 |
seq1, seq2, wildcard_offsets_seq1, wildcard_offsets_seq2, verbose=True
|
249 |
)
|
250 |
-
|
251 |
# For reporting, convert to a human-readable representation if needed
|
252 |
seq1_repr = repr(seq1)
|
253 |
seq2_repr = repr(seq2)
|
254 |
-
|
255 |
print(f"Comparing {seq1_repr} and {seq2_repr}")
|
256 |
print(f"Wildcards in seq1: {sorted(wildcard_offsets_seq1)}")
|
257 |
print(f"Wildcards in seq2: {sorted(wildcard_offsets_seq2)}")
|
258 |
print(f"Edit distance: {distance}")
|
259 |
print("\nMatch process:")
|
260 |
-
|
261 |
for i, op in enumerate(operations):
|
262 |
print(f"Step {i+1}: {op}")
|
263 |
-
|
264 |
# Visual representation of the alignment
|
265 |
i, j = 0, 0
|
266 |
is_bytes = isinstance(seq1, bytes)
|
267 |
-
|
268 |
if is_bytes:
|
269 |
aligned_seq1 = bytearray()
|
270 |
aligned_seq2 = bytearray()
|
271 |
-
gap = ord(
|
272 |
else:
|
273 |
aligned_seq1 = ""
|
274 |
aligned_seq2 = ""
|
275 |
-
gap =
|
276 |
-
|
277 |
match_indicators = ""
|
278 |
-
|
279 |
for op in operations:
|
280 |
-
if
|
|
|
|
|
|
|
|
|
|
|
281 |
if is_bytes:
|
282 |
aligned_seq1.append(seq1[i])
|
283 |
aligned_seq2.append(seq2[j])
|
284 |
else:
|
285 |
aligned_seq1 += seq1[i]
|
286 |
aligned_seq2 += seq2[j]
|
287 |
-
|
288 |
# Determine match indicator
|
289 |
if "Wildcard match:" in op or "Double wildcard:" in op:
|
290 |
match_indicators += "*" # Wildcard match
|
@@ -292,7 +325,7 @@ def print_match_summary(seq1, seq2, wildcard_offsets_seq1=None, wildcard_offsets
|
|
292 |
match_indicators += "|" # Exact match
|
293 |
else:
|
294 |
match_indicators += "X" # Substitution
|
295 |
-
|
296 |
i += 1
|
297 |
j += 1
|
298 |
elif "Insertion:" in op:
|
@@ -302,7 +335,7 @@ def print_match_summary(seq1, seq2, wildcard_offsets_seq1=None, wildcard_offsets
|
|
302 |
else:
|
303 |
aligned_seq1 += gap
|
304 |
aligned_seq2 += seq2[j]
|
305 |
-
|
306 |
match_indicators += " "
|
307 |
j += 1
|
308 |
elif "Deletion:" in op:
|
@@ -312,57 +345,64 @@ def print_match_summary(seq1, seq2, wildcard_offsets_seq1=None, wildcard_offsets
|
|
312 |
else:
|
313 |
aligned_seq1 += seq1[i]
|
314 |
aligned_seq2 += gap
|
315 |
-
|
316 |
match_indicators += " "
|
317 |
i += 1
|
318 |
-
|
319 |
print("\nAlignment:")
|
320 |
if is_bytes:
|
321 |
aligned_seq1 = bytes(aligned_seq1)
|
322 |
aligned_seq2 = bytes(aligned_seq2)
|
323 |
-
|
324 |
print(repr(aligned_seq1))
|
325 |
print(match_indicators)
|
326 |
print(repr(aligned_seq2))
|
327 |
print("\nLegend:")
|
328 |
-
print(
|
329 |
-
|
|
|
|
|
330 |
# Summary of wildcard matches
|
331 |
-
wildcard_matches = [
|
|
|
|
|
332 |
if wildcard_matches:
|
333 |
print("\nWildcard matches:")
|
334 |
for match in wildcard_matches:
|
335 |
print(f"- {match}")
|
336 |
-
|
337 |
return distance, operations
|
338 |
|
|
|
339 |
# Example usage
|
340 |
if __name__ == "__main__":
|
341 |
print("\n--- String Examples ---")
|
342 |
# Example 1: "hello" vs "hello" with no wildcards
|
343 |
print_match_summary("hello", "hello")
|
344 |
-
|
345 |
# Example 2: "hello" vs "hallo" with no wildcards - expect distance of 1
|
346 |
print_match_summary("hello", "hallo")
|
347 |
-
|
348 |
# Example 3: "hello" with 3rd position (index 2) as wildcard vs "hallo" - expect distance of 0
|
349 |
print_match_summary("hello", "hallo", wildcard_offsets_seq1=[2])
|
350 |
-
|
351 |
# Example 4: "hello" vs "hillo" with 2nd position (index 1) as wildcard in seq2 - expect distance of 0
|
352 |
print_match_summary("hello", "hillo", wildcard_offsets_seq2=[1])
|
353 |
-
|
354 |
# Example 5: Multiple wildcards in seq1
|
355 |
print_match_summary("hello", "haxyz", wildcard_offsets_seq1=[2, 3, 4])
|
356 |
-
|
357 |
print("\n--- Bytes Examples ---")
|
358 |
# Example 6: Working with bytes
|
359 |
print_match_summary(b"hello", b"hallo")
|
360 |
-
|
361 |
# Example 7: Working with bytes with wildcard
|
362 |
print_match_summary(b"hello", b"hallo", wildcard_offsets_seq1=[2])
|
363 |
-
|
364 |
# Example 8: Mixed types (bytes and string)
|
365 |
print_match_summary(b"hello", "hallo", wildcard_offsets_seq1=[2])
|
366 |
-
|
367 |
# Example 9: Non-printable bytes example
|
368 |
-
print_match_summary(
|
|
|
|
|
|
6 |
two sequences (strings or bytes) with support for wildcard positions.
|
7 |
"""
|
8 |
|
9 |
+
|
10 |
def ensure_same_type(seq1, seq2):
|
11 |
"""
|
12 |
Ensure both sequences are the same type (both str or both bytes).
|
13 |
+
|
14 |
Args:
|
15 |
seq1: First sequence (str or bytes)
|
16 |
seq2: Second sequence (str or bytes)
|
17 |
+
|
18 |
Returns:
|
19 |
Tuple of (seq1, seq2) with consistent types
|
20 |
"""
|
21 |
if isinstance(seq1, str) and isinstance(seq2, bytes):
|
22 |
+
seq2 = seq2.decode("utf-8", errors="replace")
|
23 |
elif isinstance(seq1, bytes) and isinstance(seq2, str):
|
24 |
+
seq2 = seq2.encode("utf-8", errors="replace")
|
25 |
return seq1, seq2
|
26 |
|
27 |
+
|
28 |
def to_bytes(s):
|
29 |
"""
|
30 |
Convert a sequence to bytes if it's a string, otherwise return as is.
|
31 |
+
|
32 |
Args:
|
33 |
s: The sequence to convert (str or bytes)
|
34 |
+
|
35 |
Returns:
|
36 |
bytes: The input converted to bytes if it was a string
|
37 |
"""
|
38 |
+
return s.encode("utf-8", errors="replace") if isinstance(s, str) else s
|
39 |
+
|
40 |
|
41 |
def to_str(s):
|
42 |
"""
|
43 |
Convert a sequence to string if it's bytes, otherwise return as is.
|
44 |
+
|
45 |
Args:
|
46 |
s: The sequence to convert (str or bytes)
|
47 |
+
|
48 |
Returns:
|
49 |
str: The input converted to string if it was bytes
|
50 |
"""
|
51 |
+
return s.decode("utf-8", errors="replace") if isinstance(s, bytes) else s
|
52 |
+
|
53 |
|
54 |
def get_element_repr(element):
|
55 |
"""
|
56 |
Get a human-readable representation of a sequence element.
|
57 |
+
|
58 |
Args:
|
59 |
element: A single element from a sequence (byte or character)
|
60 |
+
|
61 |
Returns:
|
62 |
str: A printable representation of the element
|
63 |
"""
|
|
|
67 |
return f"0x{element:02x}"
|
68 |
return repr(element) # For str objects
|
69 |
|
70 |
+
|
71 |
+
def levenshtein_with_wildcard(
|
72 |
+
seq1, seq2, wildcard_offsets_seq1=None, wildcard_offsets_seq2=None, verbose=False
|
73 |
+
):
|
74 |
"""
|
75 |
Calculate the Levenshtein distance between two sequences with support for wildcards.
|
76 |
Works with both strings and bytes.
|
77 |
+
|
78 |
Args:
|
79 |
seq1: First sequence (str or bytes)
|
80 |
seq2: Second sequence (str or bytes)
|
81 |
wildcard_offsets_seq1 (iterable, optional): Indices in seq1 that are wildcards. Defaults to None.
|
82 |
wildcard_offsets_seq2 (iterable, optional): Indices in seq2 that are wildcards. Defaults to None.
|
83 |
verbose (bool, optional): If True, returns additional information about operations. Defaults to False.
|
84 |
+
|
85 |
Returns:
|
86 |
int: The Levenshtein distance between the two sequences.
|
87 |
list: If verbose=True, also returns a list of operations performed.
|
|
|
89 |
# Initialize empty sets if None
|
90 |
wildcard_offsets_seq1 = set(wildcard_offsets_seq1 or [])
|
91 |
wildcard_offsets_seq2 = set(wildcard_offsets_seq2 or [])
|
92 |
+
|
93 |
m, n = len(seq1), len(seq2)
|
94 |
+
|
95 |
# Create a matrix of size (m+1) x (n+1)
|
96 |
dp = [[0] * (n + 1) for _ in range(m + 1)]
|
97 |
+
|
98 |
# Initialize the first row and column
|
99 |
for i in range(m + 1):
|
100 |
dp[i][0] = i
|
101 |
+
|
102 |
for j in range(n + 1):
|
103 |
dp[0][j] = j
|
104 |
+
|
105 |
# Fill the dp matrix
|
106 |
for i in range(1, m + 1):
|
107 |
for j in range(1, n + 1):
|
108 |
# Check if either position is a wildcard
|
109 |
is_seq1_wildcard = (i - 1) in wildcard_offsets_seq1
|
110 |
is_seq2_wildcard = (j - 1) in wildcard_offsets_seq2
|
111 |
+
|
112 |
# If either position is a wildcard, treat it as a match (cost = 0)
|
113 |
if is_seq1_wildcard or is_seq2_wildcard:
|
114 |
dp[i][j] = dp[i - 1][j - 1] # No cost for wildcard matches
|
115 |
else:
|
116 |
cost = 0 if seq1[i - 1] == seq2[j - 1] else 1
|
117 |
dp[i][j] = min(
|
118 |
+
dp[i - 1][j] + 1, # deletion
|
119 |
+
dp[i][j - 1] + 1, # insertion
|
120 |
+
dp[i - 1][j - 1] + cost, # substitution
|
121 |
)
|
122 |
+
|
123 |
if verbose:
|
124 |
+
operations = explain_match(
|
125 |
+
seq1, seq2, dp, wildcard_offsets_seq1, wildcard_offsets_seq2
|
126 |
+
)
|
127 |
return dp[m][n], operations
|
128 |
+
|
129 |
return dp[m][n]
|
130 |
|
131 |
+
|
132 |
def explain_match(seq1, seq2, dp, wildcard_offsets_seq1, wildcard_offsets_seq2):
|
133 |
"""
|
134 |
Traces the optimal alignment path and explains each step of the matching process.
|
135 |
+
|
136 |
Args:
|
137 |
seq1: First sequence (str or bytes)
|
138 |
seq2: Second sequence (str or bytes)
|
139 |
dp (list): The dynamic programming matrix.
|
140 |
wildcard_offsets_seq1 (set): Indices in seq1 that are wildcards.
|
141 |
wildcard_offsets_seq2 (set): Indices in seq2 that are wildcards.
|
142 |
+
|
143 |
Returns:
|
144 |
list: A list of explanation strings for each operation performed.
|
145 |
"""
|
146 |
m, n = len(seq1), len(seq2)
|
147 |
operations = []
|
148 |
+
|
149 |
# Find the optimal path
|
150 |
i, j = m, n
|
151 |
path = []
|
152 |
+
|
153 |
while i > 0 or j > 0:
|
154 |
path.append((i, j))
|
155 |
+
|
156 |
if i == 0:
|
157 |
j -= 1
|
158 |
elif j == 0:
|
159 |
i -= 1
|
160 |
else:
|
161 |
+
substitution_cost = dp[i - 1][j - 1]
|
162 |
+
deletion_cost = dp[i - 1][j]
|
163 |
+
insertion_cost = dp[i][j - 1]
|
164 |
+
|
165 |
min_cost = min(substitution_cost, deletion_cost, insertion_cost)
|
166 |
+
|
167 |
if min_cost == substitution_cost:
|
168 |
i -= 1
|
169 |
j -= 1
|
|
|
171 |
i -= 1
|
172 |
else:
|
173 |
j -= 1
|
174 |
+
|
175 |
path.append((0, 0))
|
176 |
path.reverse()
|
177 |
+
|
178 |
# Generate explanations for each step
|
179 |
for idx in range(1, len(path)):
|
180 |
+
prev_i, prev_j = path[idx - 1]
|
181 |
curr_i, curr_j = path[idx]
|
182 |
+
|
183 |
# Diagonal move (match or substitution)
|
184 |
if curr_i > prev_i and curr_j > prev_j:
|
185 |
+
char1_idx = curr_i - 1
|
186 |
+
char2_idx = curr_j - 1
|
187 |
char1 = seq1[char1_idx]
|
188 |
char2 = seq2[char2_idx]
|
189 |
+
|
190 |
is_seq1_wildcard = char1_idx in wildcard_offsets_seq1
|
191 |
is_seq2_wildcard = char2_idx in wildcard_offsets_seq2
|
192 |
+
|
193 |
char1_repr = get_element_repr(char1)
|
194 |
char2_repr = get_element_repr(char2)
|
195 |
+
|
196 |
if is_seq1_wildcard and is_seq2_wildcard:
|
197 |
+
operations.append(
|
198 |
+
f"Double wildcard: Position {char1_idx} in seq1 and position {char2_idx} in seq2 are both wildcards"
|
199 |
+
)
|
200 |
elif is_seq1_wildcard:
|
201 |
+
operations.append(
|
202 |
+
f"Wildcard match: Position {char1_idx} in seq1 is a wildcard, matches {char2_repr} at position {char2_idx} in seq2"
|
203 |
+
)
|
204 |
elif is_seq2_wildcard:
|
205 |
+
operations.append(
|
206 |
+
f"Wildcard match: Position {char2_idx} in seq2 is a wildcard, matches {char1_repr} at position {char1_idx} in seq1"
|
207 |
+
)
|
208 |
elif char1 == char2:
|
209 |
+
operations.append(
|
210 |
+
f"Match: {char1_repr} at position {char1_idx} matches {char2_repr} at position {char2_idx}"
|
211 |
+
)
|
212 |
else:
|
213 |
+
operations.append(
|
214 |
+
f"Substitution: Replace {char1_repr} at position {char1_idx} with {char2_repr} at position {char2_idx}"
|
215 |
+
)
|
216 |
+
|
217 |
# Horizontal move (insertion)
|
218 |
elif curr_i == prev_i and curr_j > prev_j:
|
219 |
+
char_idx = curr_j - 1
|
220 |
char_repr = get_element_repr(seq2[char_idx])
|
221 |
+
operations.append(
|
222 |
+
f"Insertion: Insert {char_repr} at position {char_idx} in seq2"
|
223 |
+
)
|
224 |
+
|
225 |
# Vertical move (deletion)
|
226 |
elif curr_i > prev_i and curr_j == prev_j:
|
227 |
+
char_idx = curr_i - 1
|
228 |
char_repr = get_element_repr(seq1[char_idx])
|
229 |
+
operations.append(
|
230 |
+
f"Deletion: Delete {char_repr} at position {char_idx} in seq1"
|
231 |
+
)
|
232 |
+
|
233 |
return operations
|
234 |
|
235 |
+
|
236 |
def create_gap_element(sequence):
|
237 |
"""
|
238 |
Create a gap element compatible with the sequence type.
|
239 |
+
|
240 |
Args:
|
241 |
sequence: The sequence (str or bytes) to create a gap for
|
242 |
+
|
243 |
Returns:
|
244 |
The appropriate gap element for the sequence type
|
245 |
"""
|
246 |
if isinstance(sequence, bytes):
|
247 |
+
return b"-"
|
248 |
else:
|
249 |
+
return "-"
|
250 |
|
251 |
+
|
252 |
+
def print_match_summary(
|
253 |
+
seq1, seq2, wildcard_offsets_seq1=None, wildcard_offsets_seq2=None
|
254 |
+
):
|
255 |
"""
|
256 |
Prints a summary of the match between two sequences, highlighting wildcards by their offsets.
|
257 |
Works with both strings and bytes.
|
258 |
+
|
259 |
Args:
|
260 |
seq1: First sequence (str or bytes)
|
261 |
seq2: Second sequence (str or bytes)
|
262 |
wildcard_offsets_seq1 (iterable, optional): Indices in seq1 that are wildcards. Defaults to None.
|
263 |
wildcard_offsets_seq2 (iterable, optional): Indices in seq2 that are wildcards. Defaults to None.
|
264 |
+
|
265 |
Returns:
|
266 |
tuple: (distance, operations) The edit distance and list of operations
|
267 |
"""
|
268 |
# Ensure sequences are of the same type for comparison
|
269 |
seq1, seq2 = ensure_same_type(seq1, seq2)
|
270 |
+
|
271 |
# Initialize empty sets if None
|
272 |
wildcard_offsets_seq1 = set(wildcard_offsets_seq1 or [])
|
273 |
wildcard_offsets_seq2 = set(wildcard_offsets_seq2 or [])
|
274 |
+
|
275 |
distance, operations = levenshtein_with_wildcard(
|
276 |
seq1, seq2, wildcard_offsets_seq1, wildcard_offsets_seq2, verbose=True
|
277 |
)
|
278 |
+
|
279 |
# For reporting, convert to a human-readable representation if needed
|
280 |
seq1_repr = repr(seq1)
|
281 |
seq2_repr = repr(seq2)
|
282 |
+
|
283 |
print(f"Comparing {seq1_repr} and {seq2_repr}")
|
284 |
print(f"Wildcards in seq1: {sorted(wildcard_offsets_seq1)}")
|
285 |
print(f"Wildcards in seq2: {sorted(wildcard_offsets_seq2)}")
|
286 |
print(f"Edit distance: {distance}")
|
287 |
print("\nMatch process:")
|
288 |
+
|
289 |
for i, op in enumerate(operations):
|
290 |
print(f"Step {i+1}: {op}")
|
291 |
+
|
292 |
# Visual representation of the alignment
|
293 |
i, j = 0, 0
|
294 |
is_bytes = isinstance(seq1, bytes)
|
295 |
+
|
296 |
if is_bytes:
|
297 |
aligned_seq1 = bytearray()
|
298 |
aligned_seq2 = bytearray()
|
299 |
+
gap = ord("-")
|
300 |
else:
|
301 |
aligned_seq1 = ""
|
302 |
aligned_seq2 = ""
|
303 |
+
gap = "-"
|
304 |
+
|
305 |
match_indicators = ""
|
306 |
+
|
307 |
for op in operations:
|
308 |
+
if (
|
309 |
+
"Match:" in op
|
310 |
+
or "Substitution:" in op
|
311 |
+
or "Wildcard match:" in op
|
312 |
+
or "Double wildcard:" in op
|
313 |
+
):
|
314 |
if is_bytes:
|
315 |
aligned_seq1.append(seq1[i])
|
316 |
aligned_seq2.append(seq2[j])
|
317 |
else:
|
318 |
aligned_seq1 += seq1[i]
|
319 |
aligned_seq2 += seq2[j]
|
320 |
+
|
321 |
# Determine match indicator
|
322 |
if "Wildcard match:" in op or "Double wildcard:" in op:
|
323 |
match_indicators += "*" # Wildcard match
|
|
|
325 |
match_indicators += "|" # Exact match
|
326 |
else:
|
327 |
match_indicators += "X" # Substitution
|
328 |
+
|
329 |
i += 1
|
330 |
j += 1
|
331 |
elif "Insertion:" in op:
|
|
|
335 |
else:
|
336 |
aligned_seq1 += gap
|
337 |
aligned_seq2 += seq2[j]
|
338 |
+
|
339 |
match_indicators += " "
|
340 |
j += 1
|
341 |
elif "Deletion:" in op:
|
|
|
345 |
else:
|
346 |
aligned_seq1 += seq1[i]
|
347 |
aligned_seq2 += gap
|
348 |
+
|
349 |
match_indicators += " "
|
350 |
i += 1
|
351 |
+
|
352 |
print("\nAlignment:")
|
353 |
if is_bytes:
|
354 |
aligned_seq1 = bytes(aligned_seq1)
|
355 |
aligned_seq2 = bytes(aligned_seq2)
|
356 |
+
|
357 |
print(repr(aligned_seq1))
|
358 |
print(match_indicators)
|
359 |
print(repr(aligned_seq2))
|
360 |
print("\nLegend:")
|
361 |
+
print(
|
362 |
+
"| = exact match, * = wildcard match, X = substitution, - = gap (insertion/deletion)"
|
363 |
+
)
|
364 |
+
|
365 |
# Summary of wildcard matches
|
366 |
+
wildcard_matches = [
|
367 |
+
op for op in operations if "Wildcard match:" in op or "Double wildcard:" in op
|
368 |
+
]
|
369 |
if wildcard_matches:
|
370 |
print("\nWildcard matches:")
|
371 |
for match in wildcard_matches:
|
372 |
print(f"- {match}")
|
373 |
+
|
374 |
return distance, operations
|
375 |
|
376 |
+
|
377 |
# Example usage
|
378 |
if __name__ == "__main__":
|
379 |
print("\n--- String Examples ---")
|
380 |
# Example 1: "hello" vs "hello" with no wildcards
|
381 |
print_match_summary("hello", "hello")
|
382 |
+
|
383 |
# Example 2: "hello" vs "hallo" with no wildcards - expect distance of 1
|
384 |
print_match_summary("hello", "hallo")
|
385 |
+
|
386 |
# Example 3: "hello" with 3rd position (index 2) as wildcard vs "hallo" - expect distance of 0
|
387 |
print_match_summary("hello", "hallo", wildcard_offsets_seq1=[2])
|
388 |
+
|
389 |
# Example 4: "hello" vs "hillo" with 2nd position (index 1) as wildcard in seq2 - expect distance of 0
|
390 |
print_match_summary("hello", "hillo", wildcard_offsets_seq2=[1])
|
391 |
+
|
392 |
# Example 5: Multiple wildcards in seq1
|
393 |
print_match_summary("hello", "haxyz", wildcard_offsets_seq1=[2, 3, 4])
|
394 |
+
|
395 |
print("\n--- Bytes Examples ---")
|
396 |
# Example 6: Working with bytes
|
397 |
print_match_summary(b"hello", b"hallo")
|
398 |
+
|
399 |
# Example 7: Working with bytes with wildcard
|
400 |
print_match_summary(b"hello", b"hallo", wildcard_offsets_seq1=[2])
|
401 |
+
|
402 |
# Example 8: Mixed types (bytes and string)
|
403 |
print_match_summary(b"hello", "hallo", wildcard_offsets_seq1=[2])
|
404 |
+
|
405 |
# Example 9: Non-printable bytes example
|
406 |
+
print_match_summary(
|
407 |
+
b"\x01\x02\x03\x04", b"\x01\x05\x03\x04", wildcard_offsets_seq1=[1]
|
408 |
+
)
|