ejschwartz commited on
Commit
d11795a
·
1 Parent(s): 30626c1

More logging

Browse files
Files changed (1) hide show
  1. app.py +22 -2
app.py CHANGED
@@ -7,11 +7,25 @@ import spaces
7
  import torch
8
  import logging
9
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
10
 
11
- # Set up standard logging
12
- logging.basicConfig(level=logging.DEBUG)
 
 
 
13
  logger = logging.getLogger(__name__)
14
 
 
 
 
 
 
 
 
 
 
 
15
  import huggingface_hub
16
 
17
  import prep_decompiled
@@ -36,8 +50,14 @@ print(f"GPU memory after vardecoder:")
36
  print(f"Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
37
  print(f"Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
38
 
 
39
  try:
40
  logger.info("Loading fielddecoder model...")
 
 
 
 
 
41
  fielddecoder_model = AutoModelForCausalLM.from_pretrained(
42
  "ejschwartz/resym-fielddecoder",
43
  torch_dtype=torch.bfloat16,
 
7
  import torch
8
  import logging
9
  from transformers import AutoTokenizer, AutoModelForCausalLM
10
+ from transformers.utils import logging as transformers_logging
11
 
12
+ # Set up comprehensive logging
13
+ logging.basicConfig(
14
+ level=logging.DEBUG,
15
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
16
+ )
17
  logger = logging.getLogger(__name__)
18
 
19
+ # Enable transformers logging
20
+ transformers_logging.set_verbosity_debug()
21
+ transformers_logging.enable_default_handler()
22
+ transformers_logging.enable_explicit_format()
23
+
24
+ # Enable accelerate and torch logging
25
+ logging.getLogger("accelerate").setLevel(logging.DEBUG)
26
+ logging.getLogger("torch").setLevel(logging.DEBUG)
27
+ logging.getLogger("transformers").setLevel(logging.DEBUG)
28
+
29
  import huggingface_hub
30
 
31
  import prep_decompiled
 
50
  print(f"Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
51
  print(f"Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
52
 
53
+ # Add more detailed debugging before loading the second model
54
  try:
55
  logger.info("Loading fielddecoder model...")
56
+ print(f"CUDA available: {torch.cuda.is_available()}")
57
+ print(f"CUDA device count: {torch.cuda.device_count()}")
58
+ print(f"Current device: {torch.cuda.current_device()}")
59
+ print(f"Device name: {torch.cuda.get_device_name()}")
60
+
61
  fielddecoder_model = AutoModelForCausalLM.from_pretrained(
62
  "ejschwartz/resym-fielddecoder",
63
  torch_dtype=torch.bfloat16,