|
|
|
import gradio as gr
|
|
from app import demo as app
|
|
import os
|
|
|
|
_docs = {'TokenizerTextBox': {'description': "Creates a textarea for user to enter string input or display string output,\nwith built-in, client-side tokenization visualization powered by Transformers.js.\nThe component's value is a JSON object containing the text and tokenization results.", 'members': {'__init__': {'value': {'type': 'typing.Union[str, dict, typing.Callable, NoneType][\n str, dict, Callable, None\n]', 'default': 'None', 'description': 'The initial value. Can be a string to initialize the text, or a dictionary for full state. If a function is provided, it will be called when the app loads to set the initial value.'}, 'model': {'type': 'str', 'default': '"Xenova/gpt-3"', 'description': 'The name of a Hugging Face tokenizer to use (must be compatible with Transformers.js). Defaults to "Xenova/gpt-2".'}, 'display_mode': {'type': '"text" | "token_ids" | "hidden"', 'default': '"text"', 'description': "Controls the content of the token visualization panel. Can be 'text' (default), 'token_ids', or 'hidden'."}, 'lines': {'type': 'int', 'default': '2', 'description': 'The minimum number of line rows for the textarea.'}, 'max_lines': {'type': 'int | None', 'default': 'None', 'description': 'The maximum number of line rows for the textarea.'}, 'placeholder': {'type': 'str | None', 'default': 'None', 'description': 'A placeholder hint to display in the textarea when it is empty.'}, 'autofocus': {'type': 'bool', 'default': 'False', 'description': 'If True, will focus on the textbox when the page loads.'}, 'autoscroll': {'type': 'bool', 'default': 'True', 'description': 'If True, will automatically scroll to the bottom of the textbox when the value changes.'}, 'text_align': {'type': 'typing.Optional[typing.Literal["left", "right"]][\n "left" | "right", None\n]', 'default': 'None', 'description': 'How to align the text in the textbox, can be: "left" or "right".'}, 'rtl': {'type': 'bool', 'default': 'False', 'description': 'If True, sets the direction of the text to right-to-left.'}, 'show_copy_button': {'type': 'bool', 'default': 'False', 'description': 'If True, a copy button will be shown.'}, 'max_length': {'type': 'int | None', 'default': 'None', 'description': 'The maximum number of characters allowed in the textbox.'}, 'label': {'type': 'str | None', 'default': 'None', 'description': 'The label for this component, displayed above the component.'}, 'info': {'type': 'str | None', 'default': 'None', 'description': 'Additional component description, displayed below the label.'}, 'every': {'type': 'float | None', 'default': 'None', 'description': 'If `value` is a callable, this sets a timer to run the function repeatedly.'}, 'show_label': {'type': 'bool', 'default': 'True', 'description': 'If False, the label is not displayed.'}, 'container': {'type': 'bool', 'default': 'True', 'description': 'If False, the component will not be wrapped in a container.'}, 'scale': {'type': 'int | None', 'default': 'None', 'description': 'The relative size of the component compared to others in a `gr.Row` or `gr.Column`.'}, 'min_width': {'type': 'int', 'default': '160', 'description': 'The minimum-width of the component in pixels.'}, 'interactive': {'type': 'bool | None', 'default': 'None', 'description': 'If False, the user will not be able to edit the text.'}, 'visible': {'type': 'bool', 'default': 'True', 'description': 'If False, the component will be hidden.'}, 'elem_id': {'type': 'str | None', 'default': 'None', 'description': 'An optional string that is assigned as the id of this component in the HTML DOM.'}, 'elem_classes': {'type': 'list[str] | str | None', 'default': 'None', 'description': 'An optional list of strings that are assigned as the classes of this component in the HTML DOM.'}}, 'postprocess': {'value': {'type': 'str | dict | None', 'description': 'The value to set for the component, can be a string or a dictionary.'}}, 'preprocess': {'return': {'type': 'dict | None', 'description': "A dictionary enriched with 'char_count' and 'token_count'."}, 'value': None}}, 'events': {'change': {'type': None, 'default': None, 'description': 'Triggered when the value of the TokenizerTextBox changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input.'}, 'input': {'type': None, 'default': None, 'description': 'This listener is triggered when the user changes the value of the TokenizerTextBox.'}, 'submit': {'type': None, 'default': None, 'description': 'This listener is triggered when the user presses the Enter key while the TokenizerTextBox is focused.'}, 'blur': {'type': None, 'default': None, 'description': 'This listener is triggered when the TokenizerTextBox is unfocused/blurred.'}, 'select': {'type': None, 'default': None, 'description': 'Event listener for when the user selects or deselects the TokenizerTextBox. Uses event data gradio.SelectData to carry `value` referring to the label of the TokenizerTextBox, and `selected` to refer to state of the TokenizerTextBox. See EventData documentation on how to use this event data'}}}, '__meta__': {'additional_interfaces': {}, 'user_fn_refs': {'TokenizerTextBox': []}}}
|
|
|
|
abs_path = os.path.join(os.path.dirname(__file__), "css.css")
|
|
|
|
with gr.Blocks(
|
|
css=abs_path,
|
|
theme=gr.themes.Default(
|
|
font_mono=[
|
|
gr.themes.GoogleFont("Inconsolata"),
|
|
"monospace",
|
|
],
|
|
),
|
|
) as demo:
|
|
gr.Markdown(
|
|
"""
|
|
# `gradio_tokenizertextbox`
|
|
|
|
<div style="display: flex; gap: 7px;">
|
|
<img alt="Static Badge" src="https://img.shields.io/badge/version%20-%200.0.1%20-%20orange">
|
|
</div>
|
|
|
|
Textbox tokenizer
|
|
""", elem_classes=["md-custom"], header_links=True)
|
|
app.render()
|
|
gr.Markdown(
|
|
"""
|
|
## Installation
|
|
|
|
```bash
|
|
pip install gradio_tokenizertextbox
|
|
```
|
|
|
|
## Usage
|
|
|
|
```python
|
|
#
|
|
# demo/app.py
|
|
#
|
|
import gradio as gr
|
|
from gradio_tokenizertextbox import TokenizerTextBox
|
|
import json
|
|
|
|
|
|
|
|
TOKENIZER_OPTIONS = {
|
|
"Xenova/clip-vit-large-patch14": "CLIP ViT-L/14",
|
|
"Xenova/gpt-4": "gpt-4 / gpt-3.5-turbo / text-embedding-ada-002",
|
|
"Xenova/text-davinci-003": "text-davinci-003 / text-davinci-002",
|
|
"Xenova/gpt-3": "gpt-3",
|
|
"Xenova/grok-1-tokenizer": "Grok-1",
|
|
"Xenova/claude-tokenizer": "Claude",
|
|
"Xenova/mistral-tokenizer-v3": "Mistral v3",
|
|
"Xenova/mistral-tokenizer-v1": "Mistral v1",
|
|
"Xenova/gemma-tokenizer": "Gemma",
|
|
"Xenova/llama-3-tokenizer": "Llama 3",
|
|
"Xenova/llama-tokenizer": "LLaMA / Llama 2",
|
|
"Xenova/c4ai-command-r-v01-tokenizer": "Cohere Command-R",
|
|
"Xenova/t5-small": "T5",
|
|
"Xenova/bert-base-cased": "bert-base-cased",
|
|
|
|
}
|
|
|
|
# 2. Prepare the choices for the gr.Dropdown component
|
|
# The format is a list of tuples: [(display_name, internal_value)]
|
|
dropdown_choices = [
|
|
(display_name, model_name)
|
|
for model_name, display_name in TOKENIZER_OPTIONS.items()
|
|
]
|
|
|
|
def process_output(tokenization_data):
|
|
\"\"\"
|
|
This function receives the full dictionary from the component.
|
|
\"\"\"
|
|
if not tokenization_data:
|
|
return {"status": "Waiting for input..."}
|
|
return tokenization_data
|
|
|
|
# --- Gradio Application ---
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("# TokenizerTextBox Component Demo")
|
|
gr.Markdown("# Component idea taken from the original example application on [Xenova Tokenizer Playground](https://github.com/huggingface/transformers.js-examples/tree/main/the-tokenizer-playground) ")
|
|
gr.Markdown("## Select a tokenizer from the dropdown menu to see how it processes your text in real-time.")
|
|
gr.Markdown("## For more models, check out the [Xenova Transformers Models](https://huggingface.co/Xenova/models) page.")
|
|
|
|
with gr.Row():
|
|
# 3. Create the Dropdown for model selection
|
|
model_selector = gr.Dropdown(
|
|
label="Select a Tokenizer",
|
|
choices=dropdown_choices,
|
|
value="Xenova/clip-vit-large-patch14", # Set a default value
|
|
)
|
|
|
|
display_mode_radio = gr.Radio(
|
|
["text", "token_ids", "hidden"],
|
|
label="Display Mode",
|
|
value="text"
|
|
)
|
|
|
|
# 4. Initialize the component with a default model
|
|
tokenizer_input = TokenizerTextBox(
|
|
label="Type your text here",
|
|
value="Gradio is an awesome tool for building ML demos!",
|
|
model="Xenova/clip-vit-large-patch14", # Must match the dropdown's default value
|
|
display_mode="text",
|
|
)
|
|
|
|
output_info = gr.JSON(label="Component Output (from preprocess)")
|
|
|
|
# --- Event Listeners ---
|
|
|
|
# A. When the tokenizer component changes, update the JSON output
|
|
tokenizer_input.change(
|
|
fn=process_output,
|
|
inputs=tokenizer_input,
|
|
outputs=output_info
|
|
)
|
|
|
|
# B. When the dropdown value changes, update the 'model' prop of our component
|
|
def update_tokenizer_model(selected_model):
|
|
return gr.update(model=selected_model)
|
|
|
|
model_selector.change(
|
|
fn=update_tokenizer_model,
|
|
inputs=model_selector,
|
|
outputs=tokenizer_input
|
|
)
|
|
|
|
# C. When the radio button value changes, update the 'display_mode' prop
|
|
def update_display_mode(mode):
|
|
return gr.update(display_mode=mode)
|
|
|
|
display_mode_radio.change(
|
|
fn=update_display_mode,
|
|
inputs=display_mode_radio,
|
|
outputs=tokenizer_input
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
demo.launch()
|
|
|
|
```
|
|
""", elem_classes=["md-custom"], header_links=True)
|
|
|
|
|
|
gr.Markdown("""
|
|
## `TokenizerTextBox`
|
|
|
|
### Initialization
|
|
""", elem_classes=["md-custom"], header_links=True)
|
|
|
|
gr.ParamViewer(value=_docs["TokenizerTextBox"]["members"]["__init__"], linkify=[])
|
|
|
|
|
|
gr.Markdown("### Events")
|
|
gr.ParamViewer(value=_docs["TokenizerTextBox"]["events"], linkify=['Event'])
|
|
|
|
|
|
|
|
|
|
gr.Markdown("""
|
|
|
|
### User function
|
|
|
|
The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).
|
|
|
|
- When used as an Input, the component only impacts the input signature of the user function.
|
|
- When used as an output, the component only impacts the return signature of the user function.
|
|
|
|
The code snippet below is accurate in cases where the component is used as both an input and an output.
|
|
|
|
- **As input:** Is passed, a dictionary enriched with 'char_count' and 'token_count'.
|
|
- **As output:** Should return, the value to set for the component, can be a string or a dictionary.
|
|
|
|
```python
|
|
def predict(
|
|
value: dict | None
|
|
) -> str | dict | None:
|
|
return value
|
|
```
|
|
""", elem_classes=["md-custom", "TokenizerTextBox-user-fn"], header_links=True)
|
|
|
|
|
|
|
|
|
|
demo.load(None, js=r"""function() {
|
|
const refs = {};
|
|
const user_fn_refs = {
|
|
TokenizerTextBox: [], };
|
|
requestAnimationFrame(() => {
|
|
|
|
Object.entries(user_fn_refs).forEach(([key, refs]) => {
|
|
if (refs.length > 0) {
|
|
const el = document.querySelector(`.${key}-user-fn`);
|
|
if (!el) return;
|
|
refs.forEach(ref => {
|
|
el.innerHTML = el.innerHTML.replace(
|
|
new RegExp("\\b"+ref+"\\b", "g"),
|
|
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
|
|
);
|
|
})
|
|
}
|
|
})
|
|
|
|
Object.entries(refs).forEach(([key, refs]) => {
|
|
if (refs.length > 0) {
|
|
const el = document.querySelector(`.${key}`);
|
|
if (!el) return;
|
|
refs.forEach(ref => {
|
|
el.innerHTML = el.innerHTML.replace(
|
|
new RegExp("\\b"+ref+"\\b", "g"),
|
|
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
|
|
);
|
|
})
|
|
}
|
|
})
|
|
})
|
|
}
|
|
|
|
""")
|
|
|
|
demo.launch()
|
|
|