diff --git "a/gradio_runner.py" "b/gradio_runner.py"
new file mode 100644--- /dev/null
+++ "b/gradio_runner.py"
@@ -0,0 +1,1915 @@
+import copy
+import functools
+import inspect
+import json
+import os
+import pprint
+import random
+import sys
+import traceback
+import uuid
+import filelock
+import pandas as pd
+import requests
+import tabulate
+
+from gradio_ui.css import get_css
+from gradio_ui.prompt_form import make_prompt_form
+
+# This is a hack to prevent Gradio from phoning home when it gets imported
+os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
+
+
+def my_get(url, **kwargs):
+ print('Gradio HTTP request redirected to localhost :)', flush=True)
+ kwargs.setdefault('allow_redirects', True)
+ return requests.api.request('get', 'http://127.0.0.1/', **kwargs)
+
+
+original_get = requests.get
+requests.get = my_get
+import gradio as gr
+
+requests.get = original_get
+
+from enums import DocumentChoices
+from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js
+from prompter import Prompter, \
+ prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, generate_prompt, non_hf_types, \
+ get_prompt
+from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \
+ ping, get_short_name, get_url, makedirs, get_kwargs
+from generate import get_model, languages_covered, evaluate, eval_func_param_names, score_qa, langchain_modes, \
+ inputs_kwargs_list, get_cutoffs, scratch_base_dir, evaluate_from_str, no_default_param_names, \
+ eval_func_param_names_defaults, get_max_max_new_tokens
+
+from apscheduler.schedulers.background import BackgroundScheduler
+
+
+def fix_newlines(text):
+ # ensure good visually, else markdown ignores multiple \n
+ # handle code blocks
+ ts = text.split('```')
+ for parti, part in enumerate(ts):
+ inside = parti % 2 == 1
+ if not inside:
+ ts[parti] = ts[parti].replace('\n', '
')
+ return '```'.join(ts)
+
+
+def go_gradio(**kwargs):
+ allow_api = kwargs['allow_api']
+ is_public = kwargs['is_public']
+ is_hf = kwargs['is_hf']
+ memory_restriction_level = kwargs['memory_restriction_level']
+ n_gpus = kwargs['n_gpus']
+ admin_pass = kwargs['admin_pass']
+ model_state0 = kwargs['model_state0']
+ score_model_state0 = kwargs['score_model_state0']
+ dbs = kwargs['dbs']
+ db_type = kwargs['db_type']
+ visible_langchain_modes = kwargs['visible_langchain_modes']
+ allow_upload_to_user_data = kwargs['allow_upload_to_user_data']
+ allow_upload_to_my_data = kwargs['allow_upload_to_my_data']
+ enable_sources_list = kwargs['enable_sources_list']
+ enable_url_upload = kwargs['enable_url_upload']
+ enable_text_upload = kwargs['enable_text_upload']
+ use_openai_embedding = kwargs['use_openai_embedding']
+ hf_embedding_model = kwargs['hf_embedding_model']
+ enable_captions = kwargs['enable_captions']
+ captions_model = kwargs['captions_model']
+ enable_ocr = kwargs['enable_ocr']
+ caption_loader = kwargs['caption_loader']
+
+ # easy update of kwargs needed for evaluate() etc.
+ queue = True
+ allow_upload = allow_upload_to_user_data or allow_upload_to_my_data
+ kwargs.update(locals())
+
+ if 'mbart-' in kwargs['model_lower']:
+ instruction_label_nochat = "Text to translate"
+ else:
+ instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \
+ " use Enter for multiple input lines)"
+
+ title = 'h2oGPT'
+ if 'h2ogpt-research' in kwargs['base_model']:
+ title += " [Research demonstration]"
+ more_info = """For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O-LLMStudio](https://github.com/h2oai/h2o-llmstudio)
"""
+ if is_public:
+ more_info += """"""
+ if kwargs['verbose']:
+ description = f"""Model {kwargs['base_model']} Instruct dataset.
+ For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
+ Command: {str(' '.join(sys.argv))}
+ Hash: {get_githash()}
+ """
+ else:
+ description = more_info
+ description += "If this host is busy, try [12B](https://gpt.h2o.ai), [Falcon 40B](http://falcon.h2o.ai), [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) or [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
"
+ description += """
By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md)
""" + if is_hf: + description += '''+ Run:
+
+ python generate.py --langchain_mode=MyData
+
+
+ For more options see: {langchain_readme}""", + visible=kwargs['langchain_mode'] == 'Disabled', interactive=False) + data_row1 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled') + with data_row1: + if is_hf: + # don't show 'wiki' since only usually useful for internal testing at moment + no_show_modes = ['Disabled', 'wiki'] + else: + no_show_modes = ['Disabled'] + allowed_modes = visible_langchain_modes.copy() + allowed_modes = [x for x in allowed_modes if x in dbs] + allowed_modes += ['ChatLLM', 'LLM'] + if allow_upload_to_my_data and 'MyData' not in allowed_modes: + allowed_modes += ['MyData'] + if allow_upload_to_user_data and 'UserData' not in allowed_modes: + allowed_modes += ['UserData'] + langchain_mode = gr.Radio( + [x for x in langchain_modes if x in allowed_modes and x not in no_show_modes], + value=kwargs['langchain_mode'], + label="Data Collection of Sources", + visible=kwargs['langchain_mode'] != 'Disabled') + data_row2 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled') + with data_row2: + with gr.Column(scale=50): + document_choice = gr.Dropdown(docs_state.value, + label="Choose Subset of Doc(s) in Collection [click get sources to update]", + value=docs_state.value[0], + interactive=True, + multiselect=True, + ) + with gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list): + get_sources_btn = gr.Button(value="Get Sources", + ).style(full_width=False, size='sm') + show_sources_btn = gr.Button(value="Show Sources", + ).style(full_width=False, size='sm') + refresh_sources_btn = gr.Button(value="Refresh Sources", + ).style(full_width=False, size='sm') + + # import control + if kwargs['langchain_mode'] != 'Disabled': + from gpt_langchain import file_types, have_arxiv + else: + have_arxiv = False + file_types = [] + + upload_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload).style( + equal_height=False) + with upload_row: + with gr.Column(): + file_types_str = '[' + ' '.join(file_types) + ']' + fileup_output = gr.File(label=f'Upload {file_types_str}', + file_types=file_types, + file_count="multiple", + elem_id="warning", elem_classes="feedback") + with gr.Row(): + add_to_shared_db_btn = gr.Button("Add File(s) to UserData", + visible=allow_upload_to_user_data, elem_id='small_btn') + add_to_my_db_btn = gr.Button("Add File(s) to Scratch MyData", + visible=allow_upload_to_my_data, + elem_id='small_btn' if allow_upload_to_user_data else None, + ).style( + size='sm' if not allow_upload_to_user_data else None) + with gr.Column( + visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_url_upload): + url_label = 'URL (http/https) or ArXiv:' if have_arxiv else 'URL (http/https)' + url_text = gr.Textbox(label=url_label, interactive=True) + with gr.Row(): + url_user_btn = gr.Button(value='Add URL content to Shared UserData', + visible=allow_upload_to_user_data, elem_id='small_btn') + url_my_btn = gr.Button(value='Add URL content to Scratch MyData', + visible=allow_upload_to_my_data, + elem_id='small_btn' if allow_upload_to_user_data else None, + ).style(size='sm' if not allow_upload_to_user_data else None) + with gr.Column( + visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_text_upload): + user_text_text = gr.Textbox(label='Paste Text [Shift-Enter more lines]', interactive=True) + with gr.Row(): + user_text_user_btn = gr.Button(value='Add Text to Shared UserData', + visible=allow_upload_to_user_data, + elem_id='small_btn') + user_text_my_btn = gr.Button(value='Add Text to Scratch MyData', + visible=allow_upload_to_my_data, + elem_id='small_btn' if allow_upload_to_user_data else None, + ).style( + size='sm' if not allow_upload_to_user_data else None) + with gr.Column(visible=False): + # WIP: + with gr.Row(visible=False).style(equal_height=False): + github_textbox = gr.Textbox(label="Github URL") + with gr.Row(visible=True): + github_shared_btn = gr.Button(value="Add Github to Shared UserData", + visible=allow_upload_to_user_data, + elem_id='small_btn') + github_my_btn = gr.Button(value="Add Github to Scratch MyData", + visible=allow_upload_to_my_data, elem_id='small_btn') + sources_row3 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list).style( + equal_height=False) + with sources_row3: + with gr.Column(scale=1): + file_source = gr.File(interactive=False, + label="Download File w/Sources [click get sources to make file]") + with gr.Column(scale=2): + pass + sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list).style( + equal_height=False) + with sources_row: + sources_text = gr.HTML(label='Sources Added', interactive=False) + + with gr.TabItem("Expert"): + with gr.Row(): + with gr.Column(): + stream_output = gr.components.Checkbox(label="Stream output", + value=kwargs['stream_output']) + prompt_type = gr.Dropdown(prompt_types_strings, + value=kwargs['prompt_type'], label="Prompt Type", + visible=not is_public) + prompt_type2 = gr.Dropdown(prompt_types_strings, + value=kwargs['prompt_type'], label="Prompt Type Model 2", + visible=not is_public and False) + do_sample = gr.Checkbox(label="Sample", + info="Enable sampler, required for use of temperature, top_p, top_k", + value=kwargs['do_sample']) + temperature = gr.Slider(minimum=0.01, maximum=3, + value=kwargs['temperature'], + label="Temperature", + info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") + top_p = gr.Slider(minimum=0, maximum=1, + value=kwargs['top_p'], label="Top p", + info="Cumulative probability of tokens to sample from") + top_k = gr.Slider( + minimum=0, maximum=100, step=1, + value=kwargs['top_k'], label="Top k", + info='Num. tokens to sample from' + ) + # FIXME: https://github.com/h2oai/h2ogpt/issues/106 + if os.getenv('TESTINGFAIL'): + max_beams = 8 if not (memory_restriction_level or is_public) else 1 + else: + max_beams = 1 + num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, + value=min(max_beams, kwargs['num_beams']), label="Beams", + info="Number of searches for optimal overall probability. " + "Uses more GPU memory/compute") + max_max_new_tokens = get_max_max_new_tokens(model_state0, **kwargs) + max_new_tokens = gr.Slider( + minimum=1, maximum=max_max_new_tokens, step=1, + value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", + ) + min_new_tokens = gr.Slider( + minimum=0, maximum=max_max_new_tokens, step=1, + value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", + ) + max_new_tokens2 = gr.Slider( + minimum=1, maximum=max_max_new_tokens, step=1, + value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length 2", + visible=False, + ) + min_new_tokens2 = gr.Slider( + minimum=0, maximum=max_max_new_tokens, step=1, + value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length 2", + visible=False, + ) + early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", + value=kwargs['early_stopping']) + max_max_time = 60 * 20 if not is_public else 60 * 2 + if is_hf: + max_max_time = min(max_max_time, 60 * 1) + max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1, + value=min(max_max_time, kwargs['max_time']), label="Max. time", + info="Max. time to search optimal output.") + repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, + value=kwargs['repetition_penalty'], + label="Repetition Penalty") + num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, + value=kwargs['num_return_sequences'], + label="Number Returns", info="Must be <= num_beams", + visible=not is_public) + iinput = gr.Textbox(lines=4, label="Input", + placeholder=kwargs['placeholder_input'], + visible=not is_public) + context = gr.Textbox(lines=3, label="System Pre-Context", + info="Directly pre-appended without prompt processing", + visible=not is_public) + chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'], + visible=not is_public) + count_chat_tokens_btn = gr.Button(value="Count Chat Tokens", visible=not is_public) + chat_token_count = gr.Textbox(label="Chat Token Count", value=None, + visible=not is_public, interactive=False) + chunk = gr.components.Checkbox(value=kwargs['chunk'], + label="Whether to chunk documents", + info="For LangChain", + visible=not is_public) + top_k_docs = gr.Slider(minimum=0, maximum=100, step=1, + value=kwargs['top_k_docs'], + label="Number of document chunks", + info="For LangChain", + visible=not is_public) + chunk_size = gr.Number(value=kwargs['chunk_size'], + label="Chunk size for document chunking", + info="For LangChain (ignored if chunk=False)", + visible=not is_public, + precision=0) + + with gr.TabItem("Models"): + load_msg = "Load-Unload Model/LORA [unload works if did not use --base_model]" if not is_public \ + else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO" + load_msg2 = "Load-Unload Model/LORA 2 [unload works if did not use --base_model]" if not is_public \ + else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2" + compare_checkbox = gr.components.Checkbox(label="Compare Mode", + value=False, visible=not is_public) + with gr.Row(): + n_gpus_list = [str(x) for x in list(range(-1, n_gpus))] + with gr.Column(): + with gr.Row(): + with gr.Column(scale=20): + model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", + value=kwargs['base_model']) + lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", + value=kwargs['lora_weights'], visible=kwargs['show_lora']) + with gr.Column(scale=1): + load_model_button = gr.Button(load_msg).style(full_width=False, size='sm') + model_load8bit_checkbox = gr.components.Checkbox( + label="Load 8-bit [requires support]", + value=kwargs['load_8bit']) + model_infer_devices_checkbox = gr.components.Checkbox( + label="Choose Devices [If not Checked, use all GPUs]", + value=kwargs['infer_devices']) + model_gpu = gr.Dropdown(n_gpus_list, + label="GPU ID [-1 = all GPUs, if Choose is enabled]", + value=kwargs['gpu_id']) + model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'], + interactive=False) + lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], + visible=kwargs['show_lora'], interactive=False) + prompt_dict = gr.Textbox(label="Prompt (or Custom)", + value=pprint.pformat(kwargs['prompt_dict'], indent=4), + interactive=True, lines=4) + col_model2 = gr.Column(visible=False) + with col_model2: + with gr.Row(): + with gr.Column(scale=20): + model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2", + value=no_model_str) + lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2", + value=no_lora_str, + visible=kwargs['show_lora']) + with gr.Column(scale=1): + load_model_button2 = gr.Button(load_msg2).style(full_width=False, size='sm') + model_load8bit_checkbox2 = gr.components.Checkbox( + label="Load 8-bit 2 [requires support]", + value=kwargs['load_8bit']) + model_infer_devices_checkbox2 = gr.components.Checkbox( + label="Choose Devices 2 [If not Checked, use all GPUs]", + value=kwargs[ + 'infer_devices']) + model_gpu2 = gr.Dropdown(n_gpus_list, + label="GPU ID 2 [-1 = all GPUs, if choose is enabled]", + value=kwargs['gpu_id']) + # no model/lora loaded ever in model2 by default + model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str) + lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str, + visible=kwargs['show_lora']) + prompt_dict2 = gr.Textbox(label="Prompt (or Custom) 2", + value=pprint.pformat(kwargs['prompt_dict'], indent=4), + interactive=True, lines=4) + with gr.Row(): + with gr.Column(scale=50): + new_model = gr.Textbox(label="New Model HF name/path") + with gr.Row(): + add_model_button = gr.Button("Add new model name").style(full_width=False, size='sm') + with gr.Column(scale=50): + new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora']) + with gr.Row(): + add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora']).style( + full_width=False, size='sm') + with gr.TabItem("System"): + admin_row = gr.Row() + with admin_row: + admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public) + admin_btn = gr.Button(value="Admin Access", visible=is_public) + system_row = gr.Row(visible=not is_public) + with system_row: + with gr.Column(): + with gr.Row(): + system_btn = gr.Button(value='Get System Info') + system_text = gr.Textbox(label='System Info', interactive=False).style( + show_copy_button=True) + + with gr.Row(): + zip_btn = gr.Button("Zip") + zip_text = gr.Textbox(label="Zip file name", interactive=False) + file_output = gr.File(interactive=False, label="Zip file to Download") + with gr.Row(): + s3up_btn = gr.Button("S3UP") + s3up_text = gr.Textbox(label='S3UP result', interactive=False) + with gr.TabItem("Disclaimers"): + description = "" + description += """
DISCLAIMERS:
'):
+ prompt = prompt[:-4]
+ prompt = prompt.replace('
', chat_sep)
+ if not prompt.endswith(chat_sep):
+ prompt += chat_sep
+ # most recent first, add older if can
+ # only include desired chat history
+ if len(prompt + context1) > max_prompt_length:
+ break
+ context1 = prompt + context1
+
+ _, pre_response, terminate_response, chat_sep = generate_prompt({}, prompt_type1, prompt_dict1,
+ chat1, reduced=True)
+ if context1 and not context1.endswith(chat_sep):
+ context1 += chat_sep # ensure if terminates abruptly, then human continues on next line
+ return context1
+
+ def get_model_max_length(model_state1):
+ if model_state1 and not isinstance(model_state1[1], str):
+ tokenizer = model_state1[1]
+ elif model_state0 and not isinstance(model_state0[1], str):
+ tokenizer = model_state0[1]
+ else:
+ tokenizer = None
+ if tokenizer is not None:
+ return tokenizer.model_max_length
+ else:
+ return 2000
+
+ def bot(*args, retry=False):
+ """
+ bot that consumes history for user input
+ instruction (from input_list) itself is not consumed by bot
+ :param args:
+ :param retry:
+ :return:
+ """
+ # don't deepcopy, can contain model itself
+ args_list = list(args).copy()
+ model_state1 = args_list[-3]
+ my_db_state1 = args_list[-2]
+ history = args_list[-1]
+
+ if model_state1[0] is None or model_state1[0] == no_model_str:
+ history = []
+ yield history, ''
+ return
+
+ args_list = args_list[:-3] # only keep rest needed for evaluate()
+ langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')]
+ if retry and history:
+ history.pop()
+ if not args_list[eval_func_param_names.index('do_sample')]:
+ # if was not sampling, no point in retry unless change to sample
+ args_list[eval_func_param_names.index('do_sample')] = True
+ if not history:
+ print("No history", flush=True)
+ history = []
+ yield history, ''
+ return
+ instruction1 = history[-1][0]
+ if not instruction1:
+ # reject empty query, can sometimes go nuts
+ history = []
+ yield history, ''
+ return
+ prompt_type1 = args_list[eval_func_param_names.index('prompt_type')]
+ prompt_dict1 = args_list[eval_func_param_names.index('prompt_dict')]
+ chat1 = args_list[eval_func_param_names.index('chat')]
+ model_max_length1 = get_model_max_length(model_state1)
+ context1 = history_to_context(history, langchain_mode1, prompt_type1, prompt_dict1, chat1,
+ model_max_length1)
+ args_list[0] = instruction1 # override original instruction with history from user
+ args_list[2] = context1
+ fun1 = partial(evaluate,
+ model_state1,
+ my_db_state1,
+ **kwargs_evaluate)
+ try:
+ for output_fun in fun1(*tuple(args_list)):
+ output = output_fun['response']
+ extra = output_fun['sources'] # FIXME: can show sources in separate text box etc.
+ # ensure good visually, else markdown ignores multiple \n
+ bot_message = fix_newlines(output)
+ history[-1][1] = bot_message
+ yield history, ''
+ except StopIteration:
+ yield history, ''
+ except RuntimeError as e:
+ if "generator raised StopIteration" in str(e):
+ # assume last entry was bad, undo
+ history.pop()
+ yield history, ''
+ else:
+ if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
+ history[-1][1] = ''
+ yield history, str(e)
+ raise
+ except Exception as e:
+ # put error into user input
+ ex = "Exception: %s" % str(e)
+ if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
+ history[-1][1] = ''
+ yield history, ex
+ raise
+ finally:
+ clear_torch_cache()
+ return
+
+ # NORMAL MODEL
+ user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
+ inputs=inputs_list + [text_output],
+ outputs=text_output,
+ )
+ bot_args = dict(fn=bot,
+ inputs=inputs_list + [model_state, my_db_state] + [text_output],
+ outputs=[text_output, exception_text],
+ )
+ retry_bot_args = dict(fn=functools.partial(bot, retry=True),
+ inputs=inputs_list + [model_state, my_db_state] + [text_output],
+ outputs=[text_output, exception_text],
+ )
+ undo_user_args = dict(fn=functools.partial(user, undo=True),
+ inputs=inputs_list + [text_output],
+ outputs=text_output,
+ )
+
+ # MODEL2
+ user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True),
+ inputs=inputs_list2 + [text_output2],
+ outputs=text_output2,
+ )
+ bot_args2 = dict(fn=bot,
+ inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2],
+ outputs=[text_output2, exception_text],
+ )
+ retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
+ inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2],
+ outputs=[text_output2, exception_text],
+ )
+ undo_user_args2 = dict(fn=functools.partial(user, undo=True),
+ inputs=inputs_list2 + [text_output2],
+ outputs=text_output2,
+ )
+
+ def clear_instruct():
+ return gr.Textbox.update(value='')
+
+ if kwargs['auto_score']:
+ score_args_submit = score_args
+ score_args2_submit = score_args2
+ else:
+ score_args_submit = dict(fn=lambda: None, inputs=None, outputs=None)
+ score_args2_submit = dict(fn=lambda: None, inputs=None, outputs=None)
+
+ def deselect_radio_chats():
+ return gr.update(value=None)
+
+ # in case 2nd model, consume instruction first, so can clear quickly
+ # bot doesn't consume instruction itself, just history from user, so why works
+ submit_event1a = instruction.submit(**user_args, queue=queue,
+ api_name='instruction' if allow_api else None)
+ submit_event1b = submit_event1a.then(**user_args2, api_name='instruction2' if allow_api else None)
+ submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \
+ .then(clear_instruct, None, iinput)
+ submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None,
+ queue=queue)
+ submit_event1d2 = submit_event1d.then(clear_torch_cache)
+ submit_event1e = submit_event1d2.then(**score_args_submit,
+ api_name='instruction_bot_score' if allow_api else None,
+ queue=queue)
+ submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None,
+ queue=queue)
+ submit_event1f2 = submit_event1f.then(clear_torch_cache)
+ submit_event1g = submit_event1f2.then(**score_args2_submit,
+ api_name='instruction_bot_score2' if allow_api else None, queue=queue)
+ submit_event1h = submit_event1g.then(clear_torch_cache)
+ # if hit enter on new instruction for submitting new query, no longer the saved chat
+ submit_event1i = submit_event1h.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False)
+
+ submit_event2a = submit.click(**user_args, api_name='submit' if allow_api else None)
+ submit_event2b = submit_event2a.then(**user_args2, api_name='submit2' if allow_api else None)
+ submit_event2c = submit_event2b.then(clear_instruct, None, instruction) \
+ .then(clear_instruct, None, iinput)
+ submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue)
+ submit_event2d2 = submit_event2d.then(clear_torch_cache)
+ submit_event2e = submit_event2d2.then(**score_args_submit, api_name='submit_bot_score' if allow_api else None,
+ queue=queue)
+ submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None, queue=queue)
+ submit_event2f2 = submit_event2f.then(clear_torch_cache)
+ submit_event2g = submit_event2f2.then(**score_args2_submit, api_name='submit_bot_score2' if allow_api else None,
+ queue=queue)
+ submit_event2h = submit_event2g.then(clear_torch_cache)
+ # if submit new query, no longer the saved chat
+ submit_event2i = submit_event2h.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False)
+
+ submit_event3a = retry.click(**user_args, api_name='retry' if allow_api else None)
+ submit_event3b = submit_event3a.then(**user_args2, api_name='retry2' if allow_api else None)
+ submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \
+ .then(clear_instruct, None, iinput)
+ submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None,
+ queue=queue)
+ submit_event3d2 = submit_event3d.then(clear_torch_cache)
+ submit_event3e = submit_event3d2.then(**score_args_submit, api_name='retry_bot_score' if allow_api else None,
+ queue=queue)
+ submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None,
+ queue=queue)
+ submit_event3f2 = submit_event3f.then(clear_torch_cache)
+ submit_event3g = submit_event3f2.then(**score_args2_submit, api_name='retry_bot_score2' if allow_api else None,
+ queue=queue)
+ submit_event3h = submit_event3g.then(clear_torch_cache)
+ # if retry, no longer the saved chat
+ submit_event3i = submit_event3h.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False)
+
+ # if undo, no longer the saved chat
+ submit_event4 = undo.click(**undo_user_args, api_name='undo' if allow_api else None) \
+ .then(**undo_user_args2, api_name='undo2' if allow_api else None) \
+ .then(clear_instruct, None, instruction) \
+ .then(clear_instruct, None, iinput) \
+ .then(**score_args_submit, api_name='undo_score' if allow_api else None) \
+ .then(**score_args2_submit, api_name='undo_score2' if allow_api else None) \
+ .then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) \
+ .then(clear_torch_cache)
+
+ # MANAGE CHATS
+ def dedup(short_chat, short_chats):
+ if short_chat not in short_chats:
+ return short_chat
+ for i in range(1, 1000):
+ short_chat_try = short_chat + "_" + str(i)
+ if short_chat_try not in short_chats:
+ return short_chat_try
+ # fallback and hope for best
+ short_chat = short_chat + "_" + str(random.random())
+ return short_chat
+
+ def get_short_chat(x, short_chats, short_len=20, words=4):
+ if x and len(x[0]) == 2 and x[0][0] is not None:
+ short_chat = ' '.join(x[0][0][:short_len].split(' ')[:words]).strip()
+ short_chat = dedup(short_chat, short_chats)
+ else:
+ short_chat = None
+ return short_chat
+
+ def is_chat_same(x, y):
+ #
etc. added in chat, try to remove some of that to help avoid dup entries when hit new conversation + is_same = True + # length of conversation has to be same + if len(x) != len(y): + return False + for stepx, stepy in zip(x, y): + if len(stepx) != len(stepy): + # something off with a conversation + return False + if len(stepx) != 2: + # something off + return False + if len(stepy) != 2: + # something off + return False + questionx = stepx[0].replace('
', '').replace('
', '') if stepx[0] is not None else None + answerx = stepx[1].replace('', '').replace('
', '') if stepx[1] is not None else None + + questiony = stepy[0].replace('', '').replace('
', '') if stepy[0] is not None else None + answery = stepy[1].replace('', '').replace('
', '') if stepy[1] is not None else None + + if questionx != questiony or answerx != answery: + return False + return is_same + + def save_chat(chat1, chat2, chat_state1): + short_chats = list(chat_state1.keys()) + for chati in [chat1, chat2]: + if chati and len(chati) > 0 and len(chati[0]) == 2 and chati[0][1] is not None: + short_chat = get_short_chat(chati, short_chats) + if short_chat: + already_exists = any([is_chat_same(chati, x) for x in chat_state1.values()]) + if not already_exists: + chat_state1[short_chat] = chati + return chat_state1 + + def update_radio_chats(chat_state1): + return gr.update(choices=list(chat_state1.keys()), value=None) + + def switch_chat(chat_key, chat_state1): + chosen_chat = chat_state1[chat_key] + return chosen_chat, chosen_chat + + radio_chats.input(switch_chat, inputs=[radio_chats, chat_state], outputs=[text_output, text_output2]) + + def remove_chat(chat_key, chat_state1): + chat_state1.pop(chat_key, None) + return chat_state1 + + remove_chat_btn.click(remove_chat, inputs=[radio_chats, chat_state], outputs=chat_state) \ + .then(update_radio_chats, inputs=chat_state, outputs=radio_chats) + + def get_chats1(chat_state1): + base = 'chats' + makedirs(base, exist_ok=True) + filename = os.path.join(base, 'chats_%s.json' % str(uuid.uuid4())) + with open(filename, "wt") as f: + f.write(json.dumps(chat_state1, indent=2)) + return filename + + export_chats_btn.click(get_chats1, inputs=chat_state, outputs=chats_file, queue=False, + api_name='export_chats' if allow_api else None) + + def add_chats_from_file(file, chat_state1, add_btn): + if not file: + return chat_state1, add_btn + if isinstance(file, str): + files = [file] + else: + files = file + if not files: + return chat_state1, add_btn + for file1 in files: + try: + if hasattr(file1, 'name'): + file1 = file1.name + with open(file1, "rt") as f: + new_chats = json.loads(f.read()) + for chat1_k, chat1_v in new_chats.items(): + # ignore chat1_k, regenerate and de-dup to avoid loss + chat_state1 = save_chat(chat1_v, None, chat_state1) + except BaseException as e: + print("Add chats exception: %s" % str(e), flush=True) + return chat_state1, add_btn + + # note for update_user_db_func output is ignored for db + add_to_chats_btn.click(add_chats_from_file, + inputs=[chatsup_output, chat_state, add_to_chats_btn], + outputs=[chat_state, add_to_my_db_btn], queue=False, + api_name='add_to_chats' if allow_api else None) \ + .then(clear_file_list, outputs=chatsup_output, queue=False) \ + .then(update_radio_chats, inputs=chat_state, outputs=radio_chats, queue=False) + + clear_chat_btn.click(lambda: None, None, text_output, queue=False, api_name='clear' if allow_api else None) \ + .then(lambda: None, None, text_output2, queue=False, api_name='clear2' if allow_api else None) \ + .then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) + + # does both models + clear.click(save_chat, inputs=[text_output, text_output2, chat_state], outputs=chat_state, + api_name='save_chat' if allow_api else None) \ + .then(update_radio_chats, inputs=chat_state, outputs=radio_chats, + api_name='update_chats' if allow_api else None) \ + .then(lambda: None, None, text_output, queue=False, api_name='clearB' if allow_api else None) \ + .then(lambda: None, None, text_output2, queue=False, api_name='clearB2' if allow_api else None) + # NOTE: clear of instruction/iinput for nochat has to come after score, + # because score for nochat consumes actual textbox, while chat consumes chat history filled by user() + no_chat_args = dict(fn=fun, + inputs=[model_state, my_db_state] + inputs_list, + outputs=text_output_nochat, + queue=queue, + ) + submit_event_nochat = submit_nochat.click(**no_chat_args, api_name='submit_nochat' if allow_api else None) \ + .then(clear_torch_cache) \ + .then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \ + .then(clear_instruct, None, instruction_nochat) \ + .then(clear_instruct, None, iinput_nochat) \ + .then(clear_torch_cache) + # copy of above with text box submission + submit_event_nochat2 = instruction_nochat.submit(**no_chat_args) \ + .then(clear_torch_cache) \ + .then(**score_args_nochat, queue=queue) \ + .then(clear_instruct, None, instruction_nochat) \ + .then(clear_instruct, None, iinput_nochat) \ + .then(clear_torch_cache) + + submit_event_nochat_api = submit_nochat_api.click(fun_with_dict_str, + inputs=[model_state, my_db_state, inputs_dict_str], + outputs=text_output_nochat_api, + queue=True, # required for generator + api_name='submit_nochat_api' if allow_api else None) \ + .then(clear_torch_cache) + + def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id): + # ensure old model removed from GPU memory + if kwargs['debug']: + print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True) + + model0 = model_state0[0] + if isinstance(model_state_old[0], str) and model0 is not None: + # best can do, move model loaded at first to CPU + model0.cpu() + + if model_state_old[0] is not None and not isinstance(model_state_old[0], str): + try: + model_state_old[0].cpu() + except Exception as e: + # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! + print("Unable to put model on CPU: %s" % str(e), flush=True) + del model_state_old[0] + model_state_old[0] = None + + if model_state_old[1] is not None and not isinstance(model_state_old[1], str): + del model_state_old[1] + model_state_old[1] = None + + clear_torch_cache() + if kwargs['debug']: + print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True) + + if model_name is None or model_name == no_model_str: + # no-op if no model, just free memory + # no detranscribe needed for model, never go into evaluate + lora_weights = no_lora_str + return [None, None, None, model_name], model_name, lora_weights, prompt_type_old + + # don't deepcopy, can contain model itself + all_kwargs1 = all_kwargs.copy() + all_kwargs1['base_model'] = model_name.strip() + all_kwargs1['load_8bit'] = load_8bit + all_kwargs1['infer_devices'] = infer_devices + all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe + model_lower = model_name.strip().lower() + if model_lower in inv_prompt_type_to_model_lower: + prompt_type1 = inv_prompt_type_to_model_lower[model_lower] + else: + prompt_type1 = prompt_type_old + + # detranscribe + if lora_weights == no_lora_str: + lora_weights = '' + + all_kwargs1['lora_weights'] = lora_weights.strip() + model1, tokenizer1, device1 = get_model(reward_type=False, + **get_kwargs(get_model, exclude_names=['reward_type'], + **all_kwargs1)) + clear_torch_cache() + + model_state_new = [model1, tokenizer1, device1, model_name] + + max_max_new_tokens1 = get_max_max_new_tokens(model_state_new, **kwargs) + + if kwargs['debug']: + print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True) + return model_state_new, model_name, lora_weights, prompt_type1, \ + gr.Slider.update(maximum=max_max_new_tokens1), \ + gr.Slider.update(maximum=max_max_new_tokens1) + + def get_prompt_str(prompt_type1, prompt_dict1): + prompt_dict1, prompt_dict_error = get_prompt(prompt_type1, prompt_dict1, chat=False, context='', + reduced=False, return_dict=True) + if prompt_dict_error: + return str(prompt_dict_error) + else: + # return so user can manipulate if want and use as custom + return str(prompt_dict1) + + prompt_type.change(fn=get_prompt_str, inputs=[prompt_type, prompt_dict], outputs=prompt_dict) + prompt_type2.change(fn=get_prompt_str, inputs=[prompt_type2, prompt_dict2], outputs=prompt_dict2) + + def dropdown_prompt_type_list(x): + return gr.Dropdown.update(value=x) + + def chatbot_list(x, model_used_in): + return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') + + load_model_args = dict(fn=load_model, + inputs=[model_choice, lora_choice, model_state, prompt_type, + model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu], + outputs=[model_state, model_used, lora_used, + # if prompt_type changes, prompt_dict will change via change rule + prompt_type, max_new_tokens, min_new_tokens, + ]) + prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) + chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) + nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat) + if not is_public: + load_model_event = load_model_button.click(**load_model_args, api_name='load_model' if allow_api else None) \ + .then(**prompt_update_args) \ + .then(**chatbot_update_args) \ + .then(**nochat_update_args) \ + .then(clear_torch_cache) + + load_model_args2 = dict(fn=load_model, + inputs=[model_choice2, lora_choice2, model_state2, prompt_type2, + model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2], + outputs=[model_state2, model_used2, lora_used2, + # if prompt_type2 changes, prompt_dict2 will change via change rule + prompt_type2, max_new_tokens2, min_new_tokens2 + ]) + prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) + chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) + if not is_public: + load_model_event2 = load_model_button2.click(**load_model_args2, + api_name='load_model2' if allow_api else None) \ + .then(**prompt_update_args2) \ + .then(**chatbot_update_args2) \ + .then(clear_torch_cache) + + def dropdown_model_list(list0, x): + new_state = [list0[0] + [x]] + new_options = [*new_state[0]] + return gr.Dropdown.update(value=x, choices=new_options), \ + gr.Dropdown.update(value=x, choices=new_options), \ + '', new_state + + add_model_event = add_model_button.click(fn=dropdown_model_list, + inputs=[model_options_state, new_model], + outputs=[model_choice, model_choice2, new_model, model_options_state], + queue=False) + + def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2): + new_state = [list0[0] + [x]] + new_options = [*new_state[0]] + # don't switch drop-down to added lora if already have model loaded + x1 = x if model_used1 == no_model_str else lora_used1 + x2 = x if model_used2 == no_model_str else lora_used2 + return gr.Dropdown.update(value=x1, choices=new_options), \ + gr.Dropdown.update(value=x2, choices=new_options), \ + '', new_state + + add_lora_event = add_lora_button.click(fn=dropdown_lora_list, + inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, + lora_used2], + outputs=[lora_choice, lora_choice2, new_lora, lora_options_state], + queue=False) + + go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, queue=False) \ + .then(lambda: gr.update(visible=True), None, normal_block, queue=False) \ + .then(**load_model_args, queue=False).then(**prompt_update_args, queue=False) + + def compare_textbox_fun(x): + return gr.Textbox.update(visible=x) + + def compare_column_fun(x): + return gr.Column.update(visible=x) + + def compare_prompt_fun(x): + return gr.Dropdown.update(visible=x) + + def slider_fun(x): + return gr.Slider.update(visible=x) + + compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, + api_name="compare_checkbox" if allow_api else None) \ + .then(compare_column_fun, compare_checkbox, col_model2) \ + .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ + .then(compare_textbox_fun, compare_checkbox, score_text2) \ + .then(slider_fun, compare_checkbox, max_new_tokens2) \ + .then(slider_fun, compare_checkbox, min_new_tokens2) + # FIXME: add score_res2 in condition, but do better + + # callback for logging flagged input/output + callback.setup(inputs_list + [text_output, text_output2], "flagged_data_points") + flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2], None, + preprocess=False, + api_name='flag' if allow_api else None, queue=False) + flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None, + preprocess=False, + api_name='flag_nochat' if allow_api else None, queue=False) + + def get_system_info(): + return gr.Textbox.update(value=system_info_print()) + + system_event = system_btn.click(get_system_info, outputs=system_text, + api_name='system_info' if allow_api else None, queue=False) + + # don't pass text_output, don't want to clear output, just stop it + # cancel only stops outer generation, not inner generation or non-generation + stop_btn.click(lambda: None, None, None, + cancels=[submit_event1d, submit_event1f, + submit_event2d, submit_event2f, + submit_event3d, submit_event3f, + submit_event_nochat, + submit_event_nochat2, + ], + queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False) + + def count_chat_tokens(model_state1, chat1, prompt_type1, prompt_dict1): + if model_state1 and not isinstance(model_state1[1], str): + tokenizer = model_state1[1] + elif model_state0 and not isinstance(model_state0[1], str): + tokenizer = model_state0[1] + else: + tokenizer = None + if tokenizer is not None: + langchain_mode1 = 'ChatLLM' + # fake user message to mimic bot() + chat1 = copy.deepcopy(chat1) + chat1 = chat1 + [['user_message1', None]] + model_max_length1 = tokenizer.model_max_length + context1 = history_to_context(chat1, langchain_mode1, prompt_type1, prompt_dict1, chat1, + model_max_length1) + return str(tokenizer(context1, return_tensors="pt")['input_ids'].shape[1]) + else: + return "N/A" + + count_chat_tokens_btn.click(fn=count_chat_tokens, inputs=[model_state, text_output, prompt_type, prompt_dict], + outputs=chat_token_count, api_name='count_tokens' if allow_api else None) + + demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] else None) + + demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open']) + favicon_path = "h2o-logo.svg" + + scheduler = BackgroundScheduler() + scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20) + if is_public and \ + kwargs['base_model'] not in non_hf_types: + # FIXME: disable for gptj, langchain or gpt4all modify print itself + # FIXME: and any multi-threaded/async print will enter model output! + scheduler.add_job(func=ping, trigger="interval", seconds=60) + scheduler.start() + + # import control + if kwargs['langchain_mode'] == 'Disabled' and \ + os.environ.get("TEST_LANGCHAIN_IMPORT") and \ + kwargs['base_model'] not in non_hf_types: + assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have" + assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have" + + demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, + favicon_path=favicon_path, prevent_thread_lock=True, + auth=kwargs['auth']) + if kwargs['verbose']: + print("Started GUI", flush=True) + if kwargs['block_gradio_exit']: + demo.block_thread() + + +input_args_list = ['model_state', 'my_db_state'] + + +def get_inputs_list(inputs_dict, model_lower, model_id=1): + """ + map gradio objects in locals() to inputs for evaluate(). + :param inputs_dict: + :param model_lower: + :param model_id: Which model (1 or 2) of 2 + :return: + """ + inputs_list_names = list(inspect.signature(evaluate).parameters) + inputs_list = [] + inputs_dict_out = {} + for k in inputs_list_names: + if k == 'kwargs': + continue + if k in input_args_list + inputs_kwargs_list: + # these are added at use time for args or partial for kwargs, not taken as input + continue + if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: + continue + if model_id == 2: + if k == 'prompt_type': + k = 'prompt_type2' + if k == 'prompt_used': + k = 'prompt_used2' + if k == 'max_new_tokens': + k = 'max_new_tokens2' + if k == 'min_new_tokens': + k = 'min_new_tokens2' + inputs_list.append(inputs_dict[k]) + inputs_dict_out[k] = inputs_dict[k] + return inputs_list, inputs_dict_out + + +def get_sources(db1, langchain_mode, dbs=None, docs_state0=None): + if langchain_mode in ['ChatLLM', 'LLM']: + source_files_added = "NA" + source_list = [] + elif langchain_mode in ['wiki_full']: + source_files_added = "Not showing wiki_full, takes about 20 seconds and makes 4MB file." \ + " Ask jon.mckinney@h2o.ai for file if required." + source_list = [] + elif langchain_mode == 'MyData' and len(db1) > 0 and db1[0] is not None: + db_get = db1[0].get() + source_list = sorted(set([x['source'] for x in db_get['metadatas']])) + source_files_added = '\n'.join(source_list) + elif langchain_mode in dbs and dbs[langchain_mode] is not None: + db1 = dbs[langchain_mode] + db_get = db1.get() + source_list = sorted(set([x['source'] for x in db_get['metadatas']])) + source_files_added = '\n'.join(source_list) + else: + source_list = [] + source_files_added = "None" + sources_file = 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4())) + with open(sources_file, "wt") as f: + f.write(source_files_added) + source_list = docs_state0 + source_list + return sources_file, source_list + + +def update_user_db(file, db1, x, y, *args, dbs=None, langchain_mode='UserData', **kwargs): + try: + return _update_user_db(file, db1, x, y, *args, dbs=dbs, langchain_mode=langchain_mode, **kwargs) + except BaseException as e: + print(traceback.format_exc(), flush=True) + # gradio has issues if except, so fail semi-gracefully, else would hang forever in processing textbox + ex_str = "Exception: %s" % str(e) + source_files_added = """\ + + +
+ Sources:
+
+ {0}
+
+ {0}
+
+ Exceptions:
+