Spaces:
Sleeping
Sleeping
Elle McFarlane
commited on
Commit
·
e142172
1
Parent(s):
91a6b16
add readme
Browse files- text2motion/README.md +110 -0
text2motion/README.md
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Text-driven Motion Generation
|
| 2 |
+
|
| 3 |
+
<!-- TOC -->
|
| 4 |
+
|
| 5 |
+
- [Installation](#installation)
|
| 6 |
+
- [Training](#prepare-environment)
|
| 7 |
+
- [Acknowledgement](#acknowledgement)
|
| 8 |
+
|
| 9 |
+
<!-- TOC -->
|
| 10 |
+
|
| 11 |
+
## Installation
|
| 12 |
+
|
| 13 |
+
Please refer to [install.md](install.md) for detailed installation.
|
| 14 |
+
|
| 15 |
+
## Training
|
| 16 |
+
|
| 17 |
+
Due to the requirement of a large batchsize, we highly recommend you to use DDP training. A slurm-based script is as below:
|
| 18 |
+
|
| 19 |
+
```shell
|
| 20 |
+
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
|
| 21 |
+
srun -p ${PARTITION} -n8 --gres=gpu:8 -u \
|
| 22 |
+
python -u tools/train.py \
|
| 23 |
+
--name kit_baseline_ddp_8gpu_8layers_1000 \
|
| 24 |
+
--batch_size 128 \
|
| 25 |
+
--times 200 \
|
| 26 |
+
--num_epochs 50 \
|
| 27 |
+
--dataset_name kit \
|
| 28 |
+
--distributed
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
Besides, you can train the model on multi-GPUs with DataParallel:
|
| 32 |
+
|
| 33 |
+
```shell
|
| 34 |
+
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
|
| 35 |
+
python -u tools/train.py \
|
| 36 |
+
--name kit_baseline_dp_2gpu_8layers_1000 \
|
| 37 |
+
--batch_size 128 \
|
| 38 |
+
--times 50 \
|
| 39 |
+
--num_epochs 50 \
|
| 40 |
+
--dataset_name kit \
|
| 41 |
+
--num_layers 8 \
|
| 42 |
+
--diffusion_steps 1000 \
|
| 43 |
+
--data_parallel \
|
| 44 |
+
--gpu_id 0 1
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
Otherwise, you can run the training code on a single GPU like:
|
| 48 |
+
|
| 49 |
+
```shell
|
| 50 |
+
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
|
| 51 |
+
python -u tools/train.py \
|
| 52 |
+
--name kit_baseline_1gpu_8layers_1000 \
|
| 53 |
+
--batch_size 128 \
|
| 54 |
+
--times 25 \
|
| 55 |
+
--num_epochs 50 \
|
| 56 |
+
--dataset_name kit
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
Here, `times` means the duplication times of the original dataset. To retain the number of iterations, you can set `times` to 25 for 1 GPU, 50 for 2 GPUs, 100 for 4 GPUs, and 200 for 8 GPUs.
|
| 60 |
+
|
| 61 |
+
## Evaluation
|
| 62 |
+
|
| 63 |
+
```shell
|
| 64 |
+
# GPU_ID indicates which gpu you want to use
|
| 65 |
+
python -u tools/evaluation.py checkpoints/kit/kit_motiondiffuse/opt.txt GPU_ID
|
| 66 |
+
# Or you can omit this option and use cpu for evaluation
|
| 67 |
+
python -u tools/evaluation.py checkpoints/kit/kit_motiondiffuse/opt.txt
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
## Visualization
|
| 71 |
+
|
| 72 |
+
You can visualize human motion with the given language description and the expected motion length. We also provide a [Colab Demo](https://colab.research.google.com/drive/1Dp6VsZp2ozKuu9ccMmsDjyij_vXfCYb3?usp=sharing) and a [Hugging Face Demo](https://huggingface.co/spaces/mingyuan/MotionDiffuse) for your convenience.
|
| 73 |
+
|
| 74 |
+
```shell
|
| 75 |
+
# Currently we only support visualization of models trained on the HumanML3D dataset.
|
| 76 |
+
# Motion length can not be larger than 196, which is the maximum length during training
|
| 77 |
+
# You can omit `gpu_id` to run visualization on your CPU
|
| 78 |
+
# Optionally, you can store the xyz coordinates of each joint to `npy_path`. The shape of motion data is (T, 22, 3), where T denotes the motion length, 22 is the number of joints.
|
| 79 |
+
|
| 80 |
+
python -u tools/visualization.py \
|
| 81 |
+
--opt_path checkpoints/t2m/t2m_motiondiffuse/opt.txt \
|
| 82 |
+
--text "a person is jumping" \
|
| 83 |
+
--motion_length 60 \
|
| 84 |
+
--result_path "test_sample.gif" \
|
| 85 |
+
--npy_path "test_sample.npy" \
|
| 86 |
+
--gpu_id 0
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
Here are some visualization examples. The motion lengths are shown in the title of animations.
|
| 90 |
+
|
| 91 |
+
<table>
|
| 92 |
+
<tr>
|
| 93 |
+
<td><img src="../figures/gallery_t2m/gen_00.gif" width="100%"/></td>
|
| 94 |
+
<td><img src="../figures/gallery_t2m/gen_01.gif" width="100%"/></td>
|
| 95 |
+
<td><img src="../figures/gallery_t2m/gen_02.gif" width="100%"/></td>
|
| 96 |
+
<td><img src="../figures/gallery_t2m/gen_03.gif" width="100%"/></td>
|
| 97 |
+
</tr>
|
| 98 |
+
<tr>
|
| 99 |
+
<td><img src="../figures/gallery_t2m/gen_04.gif" width="100%"/></td>
|
| 100 |
+
<td><img src="../figures/gallery_t2m/gen_05.gif" width="100%"/></td>
|
| 101 |
+
<td><img src="../figures/gallery_t2m/gen_06.gif" width="100%"/></td>
|
| 102 |
+
<td><img src="../figures/gallery_t2m/gen_07.gif" width="100%"/></td>
|
| 103 |
+
</tr>
|
| 104 |
+
</table>
|
| 105 |
+
|
| 106 |
+
**Note:** You may install `matplotlib==3.3.1` to support visualization here.
|
| 107 |
+
|
| 108 |
+
## Acknowledgement
|
| 109 |
+
|
| 110 |
+
This code is developed on top of [Generating Diverse and Natural 3D Human Motions from Text](https://github.com/EricGuo5513/text-to-motion)
|