File size: 5,898 Bytes
c69419a
 
ea33a01
 
c69419a
 
ea33a01
 
 
 
c69419a
 
ea33a01
 
 
 
 
c69419a
ea33a01
 
c69419a
 
 
 
 
 
ea33a01
 
 
 
 
 
 
 
 
 
c69419a
ea33a01
c69419a
 
 
 
 
 
 
ea33a01
 
 
 
c69419a
 
 
 
 
 
ea33a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69419a
ea33a01
c69419a
ea33a01
 
 
 
c69419a
 
 
ea33a01
c69419a
 
ea33a01
c69419a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea33a01
 
 
 
c69419a
 
 
 
 
ea33a01
 
c69419a
ea33a01
 
c69419a
 
 
 
 
 
 
 
ea33a01
 
 
 
 
c69419a
 
ea33a01
 
 
 
 
 
 
c69419a
ea33a01
c69419a
 
ea33a01
c69419a
ea33a01
 
 
 
 
c69419a
 
ea33a01
c69419a
ea33a01
 
 
 
 
c69419a
 
 
 
 
 
 
 
ea33a01
c69419a
 
 
 
 
 
 
ea33a01
c69419a
 
ea33a01
c69419a
ea33a01
c69419a
 
ea33a01
 
 
 
c69419a
 
 
 
 
ea33a01
 
 
 
c69419a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
import numpy as np

# import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import (
    StableDiffusionControlNetImg2ImgPipeline,
    ControlNetModel,
)
import torch

import requests
from fastapi import FastAPI, HTTPException
from PIL import Image
from controlnet_aux import CannyDetector

device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use
model_repo_id = "runwayml/stable-diffusion-v1-5"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32
)

# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    model_repo_id,
    controlnet=controlnet,
    torch_dtype=torch_dtype,
).to(device)
pipe = pipe.to(device)
canny = CannyDetector()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    image_url,
    # negative_prompt,
    # seed,
    # randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    # if randomize_seed:
    #     seed = random.randint(0, MAX_SEED)

    # generator = torch.Generator().manual_seed(seed)

    # image = pipe(
    #     prompt=prompt,
    #     negative_prompt=negative_prompt,
    #     guidance_scale=guidance_scale,
    #     num_inference_steps=num_inference_steps,
    #     width=width,
    #     height=height,
    #     generator=generator,
    # ).images[0]

    # return image, seed

    width = int(width)
    height = int(height)

    try:
        resp = requests.get(image_url)
        resp.raise_for_status()
    except Exception as e:
        raise HTTPException(400, f"Could not download image: {e}")

    # img = Image.open(io.BytesIO(resp.content)).convert("RGB")
    img = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
    # img = img.resize((req.width, req.height))
    img = img.resize((width, height))

    control_net_image = canny(img).resize((width, height))

    prompt = (
        "redraw the logo from scratch, clean sharp vector-style, "
        # + STYLE_PROMPTS[req.style_preset]
    )

    output = pipe(
        prompt=prompt,
        negative_prompt=NEGATIVE,
        image=img,
        control_image=control_net_image,
        # strength=req.strength,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        height=height,
        width=width,
    ).images[0]

    return output


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

NEGATIVE = "blurry, distorted, messy, gradients, background noise"
WIDTH = 512
HEIGHT = 512

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            image_url = gr.Text(
                label="Image URL",
                show_label=False,
                # max_lines=1,
                placeholder="Provide a image URL",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Label(
                label="Negative prompts",
                # max_lines=1,
                value=NEGATIVE,
                visible=True,
            )

            # seed = gr.Slider(
            #     label="Seed",
            #     minimum=0,
            #     maximum=MAX_SEED,
            #     step=1,
            #     value=0,
            # )

            # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Label(
                    label="Width",
                    value=WIDTH,
                    # minimum=256,
                    # maximum=MAX_IMAGE_SIZE,
                    # step=32,
                    # value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Label(
                    label="Height",
                    value=HEIGHT,
                    # minimum=256,
                    # maximum=MAX_IMAGE_SIZE,
                    # step=32,
                    # value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=8.5,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=25,  # Replace with defaults that work for your model
                )

        # gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, image_url.submit],
        fn=infer,
        inputs=[
            image_url,
            # negative_prompt,
            # seed,
            # randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[
            result,
            # seed,
        ],
    )

if __name__ == "__main__":
    demo.launch()