Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,898 Bytes
c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a ea33a01 c69419a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
import numpy as np
# import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
)
import torch
import requests
from fastapi import FastAPI, HTTPException
from PIL import Image
from controlnet_aux import CannyDetector
device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
model_repo_id = "runwayml/stable-diffusion-v1-5"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32
)
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
model_repo_id,
controlnet=controlnet,
torch_dtype=torch_dtype,
).to(device)
pipe = pipe.to(device)
canny = CannyDetector()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
image_url,
# negative_prompt,
# seed,
# randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
# return image, seed
width = int(width)
height = int(height)
try:
resp = requests.get(image_url)
resp.raise_for_status()
except Exception as e:
raise HTTPException(400, f"Could not download image: {e}")
# img = Image.open(io.BytesIO(resp.content)).convert("RGB")
img = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
# img = img.resize((req.width, req.height))
img = img.resize((width, height))
control_net_image = canny(img).resize((width, height))
prompt = (
"redraw the logo from scratch, clean sharp vector-style, "
# + STYLE_PROMPTS[req.style_preset]
)
output = pipe(
prompt=prompt,
negative_prompt=NEGATIVE,
image=img,
control_image=control_net_image,
# strength=req.strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=height,
width=width,
).images[0]
return output
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
NEGATIVE = "blurry, distorted, messy, gradients, background noise"
WIDTH = 512
HEIGHT = 512
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
image_url = gr.Text(
label="Image URL",
show_label=False,
# max_lines=1,
placeholder="Provide a image URL",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Label(
label="Negative prompts",
# max_lines=1,
value=NEGATIVE,
visible=True,
)
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Label(
label="Width",
value=WIDTH,
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
)
height = gr.Label(
label="Height",
value=HEIGHT,
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=8.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=25, # Replace with defaults that work for your model
)
# gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, image_url.submit],
fn=infer,
inputs=[
image_url,
# negative_prompt,
# seed,
# randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[
result,
# seed,
],
)
if __name__ == "__main__":
demo.launch()
|