Feat2GS / app.py
faneggg's picture
Update app.py
d14fd29 verified
raw
history blame
19.4 kB
import os, subprocess, shlex, sys, gc
import time
import torch
import numpy as np
import shutil
import argparse
import gradio as gr
import uuid
import spaces
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "mast3r")))
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "mast3r", "dust3r")))
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.utils.device import to_numpy
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from utils.dust3r_utils import compute_global_alignment, load_images, storePly, save_colmap_cameras, save_colmap_images
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, OptimizationParams
from train_feat2gs import training
from run_video import render_sets
GRADIO_CACHE_FOLDER = './gradio_cache_folder'
from utils.feat_utils import FeatureExtractor
from dust3r.demo import _convert_scene_output_to_glb
#############################################################################################################################################
def get_dust3r_args_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size")
parser.add_argument("--model_path", type=str, default="naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt", help="path to the model weights")
parser.add_argument("--device", type=str, default='cuda', help="pytorch device")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--schedule", type=str, default='linear')
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--niter", type=int, default=300)
parser.add_argument("--focal_avg", type=bool, default=True)
parser.add_argument("--n_views", type=int, default=3)
parser.add_argument("--base_path", type=str, default=GRADIO_CACHE_FOLDER)
parser.add_argument("--feat_dim", type=int, default=256, help="PCA dimension. If None, PCA is not applied, and the original feature dimension is retained.")
parser.add_argument("--feat_type", type=str, nargs='*', default=["dust3r",], help="Feature type(s). Multiple types can be specified for combination.")
parser.add_argument("--vis_feat", action="store_true", default=True, help="Visualize features")
parser.add_argument("--vis_key", type=str, default=None, help="Feature type to visualize (only for mast3r), e.g., 'decfeat' or 'desc'")
parser.add_argument("--method", type=str, default='dust3r', help="Method of Initialization, e.g., 'dust3r' or 'mast3r'")
return parser
@spaces.GPU(duration=150)
def run_dust3r(inputfiles, input_path=None):
if input_path is not None:
imgs_path = './assets/example/' + input_path
imgs_names = sorted(os.listdir(imgs_path))
inputfiles = []
for imgs_name in imgs_names:
file_path = os.path.join(imgs_path, imgs_name)
print(file_path)
inputfiles.append(file_path)
print(inputfiles)
# ------ Step(1) DUSt3R initialization & Feature extraction ------
# os.system(f"rm -rf {GRADIO_CACHE_FOLDER}")
parser = get_dust3r_args_parser()
opt = parser.parse_args()
method = opt.method
tmp_user_folder = str(uuid.uuid4()).replace("-", "")
opt.img_base_path = os.path.join(opt.base_path, tmp_user_folder)
img_folder_path = os.path.join(opt.img_base_path, "images")
model = AsymmetricCroCo3DStereo.from_pretrained(opt.model_path).to(opt.device)
os.makedirs(img_folder_path, exist_ok=True)
opt.n_views = len(inputfiles)
if opt.n_views == 1:
raise gr.Error("The number of input images should be greater than 1.")
print("Multiple images: ", inputfiles)
# for image_file in inputfiles:
# image_path = image_file.name if hasattr(image_file, 'name') else image_file
# shutil.copy(image_path, img_folder_path)
for image_path in inputfiles:
if input_path is not None:
shutil.copy(image_path, img_folder_path)
else:
shutil.move(image_path, img_folder_path)
train_img_list = sorted(os.listdir(img_folder_path))
assert len(train_img_list)==opt.n_views, f"Number of images in the folder is not equal to {opt.n_views}"
images, ori_size = load_images(img_folder_path, size=512)
# images, ori_size, imgs_resolution = load_images(img_folder_path, size=512)
# resolutions_are_equal = len(set(imgs_resolution)) == 1
# if resolutions_are_equal == False:
# raise gr.Error("The resolution of the input image should be the same.")
print("ori_size", ori_size)
start_time = time.time()
######################################################
pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True)
output = inference(pairs, model, opt.device, batch_size=opt.batch_size)
scene = global_aligner(output, device=opt.device, mode=GlobalAlignerMode.PointCloudOptimizer)
loss = compute_global_alignment(scene=scene, init="mst", niter=opt.niter, schedule=opt.schedule, lr=opt.lr, focal_avg=opt.focal_avg)
scene = scene.clean_pointcloud()
imgs = to_numpy(scene.imgs)
focals = scene.get_focals()
poses = to_numpy(scene.get_im_poses())
pts3d = to_numpy(scene.get_pts3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(1.0)))
confidence_masks = to_numpy(scene.get_masks())
intrinsics = to_numpy(scene.get_intrinsics())
######################################################
end_time = time.time()
print(f"Time taken for {opt.n_views} views: {end_time-start_time} seconds")
output_colmap_path=img_folder_path.replace("images", f"sparse/0/{method}")
# Feature extraction for per point(per pixel)
extractor = FeatureExtractor(images, opt, method)
feats = extractor(scene=scene)
feat_type_str = '-'.join(extractor.feat_type)
output_colmap_path = os.path.join(output_colmap_path, feat_type_str)
os.makedirs(output_colmap_path, exist_ok=True)
outfile = _convert_scene_output_to_glb(output_colmap_path, imgs, pts3d, confidence_masks, focals, poses, as_pointcloud=True, cam_size=0.03)
feat_image_path = os.path.join(opt.img_base_path, "feat_dim0-9_dust3r.png")
save_colmap_cameras(ori_size, intrinsics, os.path.join(output_colmap_path, 'cameras.txt'))
save_colmap_images(poses, os.path.join(output_colmap_path, 'images.txt'), train_img_list)
pts_4_3dgs = np.concatenate([p[m] for p, m in zip(pts3d, confidence_masks)])
color_4_3dgs = np.concatenate([p[m] for p, m in zip(imgs, confidence_masks)])
color_4_3dgs = (color_4_3dgs * 255.0).astype(np.uint8)
feat_4_3dgs = np.concatenate([p[m] for p, m in zip(feats, confidence_masks)])
storePly(os.path.join(output_colmap_path, f"points3D.ply"), pts_4_3dgs, color_4_3dgs, feat_4_3dgs)
del scene
torch.cuda.empty_cache()
gc.collect()
return outfile, feat_image_path, opt, None, None
@spaces.GPU(duration=150)
def run_feat2gs(opt, niter=2000):
if opt is None:
raise gr.Error("Please run Step 1 first!")
try:
if not os.path.exists(opt.img_base_path):
raise ValueError(f"Input path does not exist: {opt.img_base_path}")
if not os.path.exists(os.path.join(opt.img_base_path, "images")):
raise ValueError("Input images not found. Please run Step 1 first")
if not os.path.exists(os.path.join(opt.img_base_path, f"sparse/0/{opt.method}")):
raise ValueError("DUSt3R output not found. Please run Step 1 first")
# ------ Step(2) Readout 3DGS from features & Jointly optimize pose ------
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--scene", type=str, default="demo")
parser.add_argument("--n_views", type=int, default=3)
parser.add_argument("--get_video", action="store_true")
parser.add_argument("--optim_pose", type=bool, default=True)
parser.add_argument("--feat_type", type=str, nargs='*', default=["dust3r",], help="Feature type(s). Multiple types can be specified for combination.")
parser.add_argument("--method", type=str, default='dust3r', help="Method of Initialization, e.g., 'dust3r' or 'mast3r'")
parser.add_argument("--feat_dim", type=int, default=256, help="Feture dimension after PCA . If None, PCA is not applied.")
parser.add_argument("--model", type=str, default='Gft', help="Model of Feat2gs, 'G'='geometry'/'T'='texture'/'A'='all'")
parser.add_argument("--dataset", default="demo", type=str)
parser.add_argument("--resize", action="store_true", default=True,
help="If True, resize rendering to square")
args = parser.parse_args(sys.argv[1:])
args.iterations = niter
args.save_iterations.append(args.iterations)
args.model_path = opt.img_base_path + '/output/'
args.source_path = opt.img_base_path
# args.model_path = GRADIO_CACHE_FOLDER + '/output/'
# args.source_path = GRADIO_CACHE_FOLDER
args.iteration = niter
os.makedirs(args.model_path, exist_ok=True)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args)
output_ply_path = opt.img_base_path + f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply'
# output_ply_path = GRADIO_CACHE_FOLDER+ f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply'
torch.cuda.empty_cache()
gc.collect()
return output_ply_path, args, None
except Exception as e:
raise gr.Error(f"Step 2 failed: {str(e)}")
@spaces.GPU(duration=150)
def run_render(opt, args, cam_traj='ellipse'):
if opt is None or args is None:
raise gr.Error("Please run Steps 1 and 2 first!")
try:
iteration_path = os.path.join(opt.img_base_path, f"output/point_cloud/iteration_{args.iteration}/point_cloud.ply")
if not os.path.exists(iteration_path):
raise ValueError("Training results not found. Please run Step 2 first")
# ------ Step(3) Render video with camera trajectory ------
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
args.eval = True
args.get_video = True
args.n_views = opt.n_views
args.cam_traj = cam_traj
render_sets(
model.extract(args),
args.iteration,
pipeline.extract(args),
args,
)
output_video_path = opt.img_base_path + f'/output/videos/demo_{opt.n_views}_view_{args.cam_traj}.mp4'
torch.cuda.empty_cache()
gc.collect()
return output_video_path
except Exception as e:
raise gr.Error(f"Step 3 failed: {str(e)}")
def process_example(inputfiles, input_path):
dust3r_model, feat_image, dust3r_state, _, _ = run_dust3r(inputfiles, input_path=input_path)
output_model, feat2gs_state, _ = run_feat2gs(dust3r_state, niter=2000)
output_video = run_render(dust3r_state, feat2gs_state, cam_traj='interpolated')
return dust3r_model, feat_image, output_model, output_video
def reset_dust3r_state():
return None, None, None, None, None
def reset_feat2gs_state():
return None, None, None
_TITLE = '''Feat2GS Demo'''
_DESCRIPTION = '''
<div style="display: flex; justify-content: center; align-items: center;">
<div style="width: 100%; text-align: center; font-size: 30px;">
<strong><span style="font-family: 'Comic Sans MS';"><span style="color: #E0933F">Feat</span><span style="color: #B24C33">2</span><span style="color: #E0933F">GS</span></span>: Probing Visual Foundation Models with Gaussian Splatting</strong>
</div>
</div>
<p></p>
<div align="center">
<a style="display:inline-block" href="https://fanegg.github.io/Feat2GS/"><img src='https://img.shields.io/badge/Project-Website-green.svg'></a>&nbsp;
<a style="display:inline-block" href="https://arxiv.org/abs/2412.09606"><img src="https://img.shields.io/badge/Arxiv-2412.09606-b31b1b.svg?logo=arXiv" alt='arxiv'></a>&nbsp;
<a style="display:inline-block" href="https://youtu.be/4fT5lzcAJqo?si=_fCSIuXNBSmov2VA"><img src='https://img.shields.io/badge/Video-E33122?logo=Youtube'></a>&nbsp;
<a style="display:inline-block" href="https://github.com/fanegg/Feat2GS"><img src="https://img.shields.io/badge/Code-black?logo=Github" alt='Code'></a>&nbsp;
<a title="X" href="https://twitter.com/faneggchen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/@Yue%20Chen-black?logo=X" alt="X">
</a>&nbsp;
<a title="Bluesky" href="https://bsky.app/profile/fanegg.bsky.social" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/@Yue%20Chen-white?logo=Bluesky" alt="Bluesky">
</a>
</div>
<p></p>
'''
# demo = gr.Blocks(title=_TITLE).queue()
demo = gr.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="Feat2GS Demo").queue()
with demo:
dust3r_state = gr.State(None)
feat2gs_state = gr.State(None)
render_state = gr.State(None)
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("🚀 Quickstart", open=False):
gr.Markdown("""
1. **Input Images**
* Upload 2 or more images of the same scene from different views
* For best results, ensure images have good overlap
2. **Step 1: DUSt3R Initialization & Feature Extraction**
* Click "RUN Step 1" to process your images
* This step estimates initial DUSt3R point cloud and camera poses, and extracts DUSt3R features for each pixel
3. **Step 2: Readout 3DGS from Features**
* Set the number of training iterations, larger number leads to better quality but longer time (default: 2000, max: 8000)
* Click "RUN Step 2" to optimize the 3D model
4. **Step 3: Video Rendering**
* Choose a camera trajectory
* Click "RUN Step 3" to generate a video of your 3D model
""")
with gr.Accordion("💡 Tips", open=False):
gr.Markdown("""
* Processing time depends on image resolution and quantity
* For optimal performance, test on high-end GPUs (A100/4090)
* Use the mouse to interact with 3D models:
- Left button: Rotate
- Scroll wheel: Zoom
- Right button: Pan
""")
with gr.Row():
with gr.Column(scale=1):
# gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Tab("Input"):
inputfiles = gr.File(file_count="multiple", label="images")
input_path = gr.Textbox(visible=False, label="example_path")
# button_gen = gr.Button("RUN")
with gr.Row(variant='panel'):
with gr.Tab("Step 1: DUSt3R initialization & Feature extraction"):
dust3r_run = gr.Button("RUN Step 1")
with gr.Column(scale=2):
with gr.Group():
dust3r_model = gr.Model3D(
label="DUSt3R Output",
interactive=False,
# camera_position=[0.5, 0.5, 1],
)
feat_image = gr.Image(
label="Feature Visualization",
type="filepath"
)
with gr.Row(variant='panel'):
with gr.Tab("Step 2: Readout 3DGS from features & Jointly optimize pose"):
niter = gr.Number(value=2000, precision=0, minimum=1000, maximum=8000, label="Training iterations")
feat2gs_run = gr.Button("RUN Step 2")
with gr.Column(scale=1):
with gr.Group():
output_model = gr.Model3D(
label="3D Gaussian Splats Output, need more time to visualize",
interactive=False,
# camera_position=[0.5, 0.5, 1],
)
gr.Markdown(
"""
<div class="model-description">
&nbsp;&nbsp;Use the left mouse button to rotate, the scroll wheel to zoom, and the right mouse button to move.
</div>
"""
)
with gr.Row(variant='panel'):
with gr.Tab("Step 3: Render video with camera trajectory"):
cam_traj = gr.Dropdown(["arc", "spiral", "lemniscate", "wander", "ellipse", "interpolated"], value='ellipse', label="Camera trajectory")
render_run = gr.Button("RUN Step 3")
with gr.Column(scale=1):
output_video = gr.Video(label="video", height=800)
dust3r_run.click(
fn=reset_dust3r_state,
inputs=None,
outputs=[dust3r_model, feat_image, dust3r_state, feat2gs_state, render_state],
queue=False
).then(
fn=run_dust3r,
inputs=[inputfiles],
outputs=[dust3r_model, feat_image, dust3r_state, feat2gs_state, render_state]
)
feat2gs_run.click(
fn=reset_feat2gs_state,
inputs=None,
outputs=[output_model, feat2gs_state, render_state],
queue=False
).then(
fn=run_feat2gs,
inputs=[dust3r_state, niter],
outputs=[output_model, feat2gs_state, render_state]
)
render_run.click(run_render, inputs=[dust3r_state, feat2gs_state, cam_traj], outputs=[output_video])
gr.Examples(
examples=[
"plushies",
],
inputs=[input_path],
outputs=[dust3r_model, feat_image, output_model, output_video],
fn=lambda x: process_example(inputfiles=None, input_path=x),
cache_examples=True,
label='Examples'
)
demo.launch(server_name="0.0.0.0", share=False)