Spaces:
Running
Running
change gsplat to diff
Browse files- .gitignore +3 -1
- app.py +1 -0
- command +0 -33
- gaussian_renderer/__init__.py +128 -130
- run_video.py +2 -2
- train_feat2gs.py +2 -2
.gitignore
CHANGED
|
@@ -20,4 +20,6 @@ build/
|
|
| 20 |
*.mp4
|
| 21 |
.vs
|
| 22 |
/exp/
|
| 23 |
-
/dev/
|
|
|
|
|
|
|
|
|
| 20 |
*.mp4
|
| 21 |
.vs
|
| 22 |
/exp/
|
| 23 |
+
/dev/
|
| 24 |
+
gradio_cached_examples/
|
| 25 |
+
gradio_cache_folder/
|
app.py
CHANGED
|
@@ -12,6 +12,7 @@ import gradio as gr
|
|
| 12 |
import uuid
|
| 13 |
import spaces
|
| 14 |
|
|
|
|
| 15 |
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
| 16 |
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
| 17 |
|
|
|
|
| 12 |
import uuid
|
| 13 |
import spaces
|
| 14 |
|
| 15 |
+
subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
| 16 |
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
| 17 |
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
| 18 |
|
command
DELETED
|
@@ -1,33 +0,0 @@
|
|
| 1 |
-
conda activate feat2gs
|
| 2 |
-
cd Feat2GS/
|
| 3 |
-
|
| 4 |
-
bash scripts/run_feat2gs_eval_parallel.sh
|
| 5 |
-
bash scripts/run_feat2gs_eval.sh
|
| 6 |
-
bash scripts/run_instantsplat_eval_parallel.sh
|
| 7 |
-
bash scripts/run_feat2gs_eval_dtu_parallel.sh
|
| 8 |
-
|
| 9 |
-
python video/generate_video.py
|
| 10 |
-
|
| 11 |
-
bash scripts/run_all_trajectories.sh
|
| 12 |
-
bash scripts/run_video_render.sh
|
| 13 |
-
bash scripts/run_video_render_instantsplat.sh
|
| 14 |
-
bash scripts/run_video_render_dtu.sh
|
| 15 |
-
|
| 16 |
-
tensorboard --logdir=/home/chenyue/output/Feat2gs/output/eval/ --port=7001
|
| 17 |
-
|
| 18 |
-
cd /home/chenyue/output/Feat2gs/output/eval/Tanks/Train/6_views/feat2gs-G/dust3r/
|
| 19 |
-
tensorboard --logdir_spec \
|
| 20 |
-
radio:radio,\
|
| 21 |
-
dust3r:dust3r,\
|
| 22 |
-
dino_b16:dino_b16,\
|
| 23 |
-
mast3r:mast3r,\
|
| 24 |
-
dift:dift,\
|
| 25 |
-
dinov2:dinov2_b14,\
|
| 26 |
-
clip:clip_b16,\
|
| 27 |
-
mae:mae_b16,\
|
| 28 |
-
midas:midas_l16,\
|
| 29 |
-
sam:sam_base,\
|
| 30 |
-
iuvrgb:iuvrgb \
|
| 31 |
-
--port 7002
|
| 32 |
-
|
| 33 |
-
CUDA_VISIBLE_DEVICES=7 gradio demo.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gaussian_renderer/__init__.py
CHANGED
|
@@ -18,142 +18,140 @@ from utils.graphics_utils import depth_to_normal
|
|
| 18 |
|
| 19 |
### if use [diff-gaussian-rasterization](https://github.com/graphdeco-inria/diff-gaussian-rasterization)
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
#
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
#
|
| 72 |
-
#
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
#
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
#
|
| 85 |
-
|
| 86 |
-
#
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
#
|
| 99 |
-
#
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
#
|
| 110 |
-
#
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
#
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
#
|
| 142 |
-
#
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
|
| 151 |
### if use [gsplat](https://github.com/nerfstudio-project/gsplat)
|
| 152 |
|
| 153 |
from gsplat import rasterization
|
| 154 |
-
import spaces
|
| 155 |
|
| 156 |
-
@spaces.GPU(duration=150)
|
| 157 |
def render_gsplat(
|
| 158 |
viewpoint_camera,
|
| 159 |
pc : GaussianModel,
|
|
|
|
| 18 |
|
| 19 |
### if use [diff-gaussian-rasterization](https://github.com/graphdeco-inria/diff-gaussian-rasterization)
|
| 20 |
|
| 21 |
+
from diff_gaussian_rasterization import (
|
| 22 |
+
GaussianRasterizationSettings,
|
| 23 |
+
GaussianRasterizer,
|
| 24 |
+
)
|
| 25 |
+
from utils.sh_utils import eval_sh
|
| 26 |
+
|
| 27 |
+
def render(
|
| 28 |
+
viewpoint_camera,
|
| 29 |
+
pc: GaussianModel,
|
| 30 |
+
pipe,
|
| 31 |
+
bg_color: torch.Tensor,
|
| 32 |
+
scaling_modifier=1.0,
|
| 33 |
+
override_color=None,
|
| 34 |
+
camera_pose=None,
|
| 35 |
+
):
|
| 36 |
+
"""
|
| 37 |
+
Render the scene.
|
| 38 |
+
|
| 39 |
+
Background tensor (bg_color) must be on GPU!
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
| 43 |
+
screenspace_points = (
|
| 44 |
+
torch.zeros_like(
|
| 45 |
+
pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda"
|
| 46 |
+
)
|
| 47 |
+
+ 0
|
| 48 |
+
)
|
| 49 |
+
try:
|
| 50 |
+
screenspace_points.retain_grad()
|
| 51 |
+
except:
|
| 52 |
+
pass
|
| 53 |
+
|
| 54 |
+
# Set up rasterization configuration
|
| 55 |
+
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
| 56 |
+
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
| 57 |
+
|
| 58 |
+
# Set camera pose as identity. Then, we will transform the Gaussians around camera_pose
|
| 59 |
+
w2c = torch.eye(4).cuda()
|
| 60 |
+
projmatrix = (
|
| 61 |
+
w2c.unsqueeze(0).bmm(viewpoint_camera.projection_matrix.unsqueeze(0))
|
| 62 |
+
).squeeze(0)
|
| 63 |
+
camera_pos = w2c.inverse()[3, :3]
|
| 64 |
+
raster_settings = GaussianRasterizationSettings(
|
| 65 |
+
image_height=int(viewpoint_camera.image_height),
|
| 66 |
+
image_width=int(viewpoint_camera.image_width),
|
| 67 |
+
tanfovx=tanfovx,
|
| 68 |
+
tanfovy=tanfovy,
|
| 69 |
+
bg=bg_color,
|
| 70 |
+
scale_modifier=scaling_modifier,
|
| 71 |
+
# viewmatrix=viewpoint_camera.world_view_transform,
|
| 72 |
+
# projmatrix=viewpoint_camera.full_proj_transform,
|
| 73 |
+
viewmatrix=w2c,
|
| 74 |
+
projmatrix=projmatrix,
|
| 75 |
+
sh_degree=pc.active_sh_degree,
|
| 76 |
+
# campos=viewpoint_camera.camera_center,
|
| 77 |
+
campos=camera_pos,
|
| 78 |
+
prefiltered=False,
|
| 79 |
+
debug=pipe.debug,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
| 83 |
+
|
| 84 |
+
# means3D = pc.get_xyz
|
| 85 |
+
rel_w2c = get_camera_from_tensor(camera_pose)
|
| 86 |
+
# Transform mean and rot of Gaussians to camera frame
|
| 87 |
+
gaussians_xyz = pc._xyz.clone()
|
| 88 |
+
gaussians_rot = pc._rotation.clone()
|
| 89 |
+
|
| 90 |
+
xyz_ones = torch.ones(gaussians_xyz.shape[0], 1).cuda().float()
|
| 91 |
+
xyz_homo = torch.cat((gaussians_xyz, xyz_ones), dim=1)
|
| 92 |
+
gaussians_xyz_trans = (rel_w2c @ xyz_homo.T).T[:, :3]
|
| 93 |
+
gaussians_rot_trans = quadmultiply(camera_pose[:4], gaussians_rot)
|
| 94 |
+
means3D = gaussians_xyz_trans
|
| 95 |
+
means2D = screenspace_points
|
| 96 |
+
opacity = pc.get_opacity
|
| 97 |
+
|
| 98 |
+
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
| 99 |
+
# scaling / rotation by the rasterizer.
|
| 100 |
+
scales = None
|
| 101 |
+
rotations = None
|
| 102 |
+
cov3D_precomp = None
|
| 103 |
+
if pipe.compute_cov3D_python:
|
| 104 |
+
cov3D_precomp = pc.get_covariance(scaling_modifier)
|
| 105 |
+
else:
|
| 106 |
+
scales = pc.get_scaling
|
| 107 |
+
rotations = gaussians_rot_trans # pc.get_rotation
|
| 108 |
+
|
| 109 |
+
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
| 110 |
+
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
| 111 |
+
shs = None
|
| 112 |
+
colors_precomp = None
|
| 113 |
+
if override_color is None:
|
| 114 |
+
if pipe.convert_SHs_python:
|
| 115 |
+
shs_view = pc.get_features.transpose(1, 2).view(
|
| 116 |
+
-1, 3, (pc.max_sh_degree + 1) ** 2
|
| 117 |
+
)
|
| 118 |
+
dir_pp = pc.get_xyz - viewpoint_camera.camera_center.repeat(
|
| 119 |
+
pc.get_features.shape[0], 1
|
| 120 |
+
)
|
| 121 |
+
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
|
| 122 |
+
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
| 123 |
+
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
| 124 |
+
else:
|
| 125 |
+
shs = pc.get_features
|
| 126 |
+
else:
|
| 127 |
+
colors_precomp = override_color
|
| 128 |
+
|
| 129 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
| 130 |
+
rendered_image, radii = rasterizer(
|
| 131 |
+
means3D=means3D,
|
| 132 |
+
means2D=means2D,
|
| 133 |
+
shs=shs,
|
| 134 |
+
colors_precomp=colors_precomp,
|
| 135 |
+
opacities=opacity,
|
| 136 |
+
scales=scales,
|
| 137 |
+
rotations=rotations,
|
| 138 |
+
cov3D_precomp=cov3D_precomp,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
| 142 |
+
# They will be excluded from value updates used in the splitting criteria.
|
| 143 |
+
return {
|
| 144 |
+
"render": rendered_image,
|
| 145 |
+
"viewspace_points": screenspace_points,
|
| 146 |
+
"visibility_filter": radii > 0,
|
| 147 |
+
"radii": radii,
|
| 148 |
+
}
|
| 149 |
|
| 150 |
|
| 151 |
### if use [gsplat](https://github.com/nerfstudio-project/gsplat)
|
| 152 |
|
| 153 |
from gsplat import rasterization
|
|
|
|
| 154 |
|
|
|
|
| 155 |
def render_gsplat(
|
| 156 |
viewpoint_camera,
|
| 157 |
pc : GaussianModel,
|
run_video.py
CHANGED
|
@@ -18,7 +18,7 @@ import torch
|
|
| 18 |
from scene import Scene
|
| 19 |
import os
|
| 20 |
from tqdm import tqdm
|
| 21 |
-
from gaussian_renderer import render_gsplat
|
| 22 |
from argparse import ArgumentParser
|
| 23 |
from arguments import ModelParams, PipelineParams, get_combined_args
|
| 24 |
from gaussian_renderer import GaussianModel
|
|
@@ -201,7 +201,7 @@ def render_sets(dataset: ModelParams, iteration: int, pipeline: PipelineParams,
|
|
| 201 |
if args.resize:
|
| 202 |
view = resize_render(view)
|
| 203 |
|
| 204 |
-
rendering =
|
| 205 |
view, gaussians, pipeline, background, camera_pose=camera_pose
|
| 206 |
)["render"]
|
| 207 |
|
|
|
|
| 18 |
from scene import Scene
|
| 19 |
import os
|
| 20 |
from tqdm import tqdm
|
| 21 |
+
from gaussian_renderer import render, render_gsplat
|
| 22 |
from argparse import ArgumentParser
|
| 23 |
from arguments import ModelParams, PipelineParams, get_combined_args
|
| 24 |
from gaussian_renderer import GaussianModel
|
|
|
|
| 201 |
if args.resize:
|
| 202 |
view = resize_render(view)
|
| 203 |
|
| 204 |
+
rendering = render(
|
| 205 |
view, gaussians, pipeline, background, camera_pose=camera_pose
|
| 206 |
)["render"]
|
| 207 |
|
train_feat2gs.py
CHANGED
|
@@ -14,7 +14,7 @@ import numpy as np
|
|
| 14 |
import torch
|
| 15 |
from random import randint
|
| 16 |
from utils.loss_utils import l1_loss, ssim
|
| 17 |
-
from gaussian_renderer import render_gsplat
|
| 18 |
import sys
|
| 19 |
from scene import Scene, Feat2GaussianModel
|
| 20 |
from argparse import ArgumentParser
|
|
@@ -133,7 +133,7 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
|
|
| 133 |
Ll1 = torch.tensor(0)
|
| 134 |
|
| 135 |
if iteration > warm_iter:
|
| 136 |
-
render_pkg =
|
| 137 |
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
|
| 138 |
|
| 139 |
# Loss
|
|
|
|
| 14 |
import torch
|
| 15 |
from random import randint
|
| 16 |
from utils.loss_utils import l1_loss, ssim
|
| 17 |
+
from gaussian_renderer import render, render_gsplat
|
| 18 |
import sys
|
| 19 |
from scene import Scene, Feat2GaussianModel
|
| 20 |
from argparse import ArgumentParser
|
|
|
|
| 133 |
Ll1 = torch.tensor(0)
|
| 134 |
|
| 135 |
if iteration > warm_iter:
|
| 136 |
+
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose)
|
| 137 |
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
|
| 138 |
|
| 139 |
# Loss
|