# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import logging import numpy as np import os import torch from PIL import Image from typing import List, Union, Optional from .differentiable_renderer.mesh_render import MeshRender from .utils.dehighlight_utils import Light_Shadow_Remover from .utils.multiview_utils import Multiview_Diffusion_Net from .utils.imagesuper_utils import Image_Super_Net from .utils.uv_warp_utils import mesh_uv_wrap logger = logging.getLogger(__name__) class Hunyuan3DTexGenConfig: def __init__(self, light_remover_ckpt_path, multiview_ckpt_path, subfolder_name): self.device = 'cuda' self.light_remover_ckpt_path = light_remover_ckpt_path self.multiview_ckpt_path = multiview_ckpt_path self.candidate_camera_azims = [0, 90, 180, 270, 0, 180] self.candidate_camera_elevs = [0, 0, 0, 0, 90, -90] self.candidate_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05] self.render_size = 2048 self.texture_size = 2048 self.bake_exp = 4 self.merge_method = 'fast' self.pipe_dict = {'hunyuan3d-paint-v2-0': 'hunyuanpaint', 'hunyuan3d-paint-v2-0-turbo': 'hunyuanpaint-turbo'} self.pipe_name = self.pipe_dict[subfolder_name] class Hunyuan3DPaintPipeline: @classmethod def from_pretrained(cls, model_path, subfolder='hunyuan3d-paint-v2-0-turbo'): original_model_path = model_path if not os.path.exists(model_path): # try local path base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen') model_path = os.path.expanduser(os.path.join(base_dir, model_path)) delight_model_path = os.path.join(model_path, 'hunyuan3d-delight-v2-0') multiview_model_path = os.path.join(model_path, subfolder) if not os.path.exists(delight_model_path) or not os.path.exists(multiview_model_path): try: import huggingface_hub # download from huggingface model_path = huggingface_hub.snapshot_download( repo_id=original_model_path, allow_patterns=["hunyuan3d-delight-v2-0/*"] ) model_path = huggingface_hub.snapshot_download( repo_id=original_model_path, allow_patterns=[f'{subfolder}/*'] ) delight_model_path = os.path.join(model_path, 'hunyuan3d-delight-v2-0') multiview_model_path = os.path.join(model_path, subfolder) return cls(Hunyuan3DTexGenConfig(delight_model_path, multiview_model_path, subfolder)) except ImportError: logger.warning( "You need to install HuggingFace Hub to load models from the hub." ) raise RuntimeError(f"Model path {model_path} not found") else: return cls(Hunyuan3DTexGenConfig(delight_model_path, multiview_model_path, subfolder)) raise FileNotFoundError(f"Model path {original_model_path} not found and we could not find it at huggingface") def __init__(self, config): self.config = config self.models = {} self.render = MeshRender( default_resolution=self.config.render_size, texture_size=self.config.texture_size) self.load_models() def load_models(self): # empty cude cache torch.cuda.empty_cache() # Load model self.models['delight_model'] = Light_Shadow_Remover(self.config) self.models['multiview_model'] = Multiview_Diffusion_Net(self.config) # self.models['super_model'] = Image_Super_Net(self.config) def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): self.models['delight_model'].pipeline.enable_model_cpu_offload(gpu_id=gpu_id, device=device) self.models['multiview_model'].pipeline.enable_model_cpu_offload(gpu_id=gpu_id, device=device) def render_normal_multiview(self, camera_elevs, camera_azims, use_abs_coor=True): normal_maps = [] for elev, azim in zip(camera_elevs, camera_azims): normal_map = self.render.render_normal( elev, azim, use_abs_coor=use_abs_coor, return_type='pl') normal_maps.append(normal_map) return normal_maps def render_position_multiview(self, camera_elevs, camera_azims): position_maps = [] for elev, azim in zip(camera_elevs, camera_azims): position_map = self.render.render_position( elev, azim, return_type='pl') position_maps.append(position_map) return position_maps def bake_from_multiview(self, views, camera_elevs, camera_azims, view_weights, method='graphcut'): project_textures, project_weighted_cos_maps = [], [] project_boundary_maps = [] for view, camera_elev, camera_azim, weight in zip( views, camera_elevs, camera_azims, view_weights): project_texture, project_cos_map, project_boundary_map = self.render.back_project( view, camera_elev, camera_azim) project_cos_map = weight * (project_cos_map ** self.config.bake_exp) project_textures.append(project_texture) project_weighted_cos_maps.append(project_cos_map) project_boundary_maps.append(project_boundary_map) if method == 'fast': texture, ori_trust_map = self.render.fast_bake_texture( project_textures, project_weighted_cos_maps) else: raise f'no method {method}' return texture, ori_trust_map > 1E-8 def texture_inpaint(self, texture, mask): texture_np = self.render.uv_inpaint(texture, mask) texture = torch.tensor(texture_np / 255).float().to(texture.device) return texture def recenter_image(self, image, border_ratio=0.2): if image.mode == 'RGB': return image elif image.mode == 'L': image = image.convert('RGB') return image alpha_channel = np.array(image)[:, :, 3] non_zero_indices = np.argwhere(alpha_channel > 0) if non_zero_indices.size == 0: raise ValueError("Image is fully transparent") min_row, min_col = non_zero_indices.min(axis=0) max_row, max_col = non_zero_indices.max(axis=0) cropped_image = image.crop((min_col, min_row, max_col + 1, max_row + 1)) width, height = cropped_image.size border_width = int(width * border_ratio) border_height = int(height * border_ratio) new_width = width + 2 * border_width new_height = height + 2 * border_height square_size = max(new_width, new_height) new_image = Image.new('RGBA', (square_size, square_size), (255, 255, 255, 0)) paste_x = (square_size - new_width) // 2 + border_width paste_y = (square_size - new_height) // 2 + border_height new_image.paste(cropped_image, (paste_x, paste_y)) return new_image @torch.no_grad() def __call__(self, mesh, image): if not isinstance(image, List): image = [image] images_prompt = [] for i in range(len(image)): if isinstance(image[i], str): image_prompt = Image.open(image[i]) else: image_prompt = image[i] images_prompt.append(image_prompt) images_prompt = [self.recenter_image(image_prompt) for image_prompt in images_prompt] images_prompt = [self.models['delight_model'](image_prompt) for image_prompt in images_prompt] mesh = mesh_uv_wrap(mesh) self.render.load_mesh(mesh) selected_camera_elevs, selected_camera_azims, selected_view_weights = \ self.config.candidate_camera_elevs, self.config.candidate_camera_azims, self.config.candidate_view_weights normal_maps = self.render_normal_multiview( selected_camera_elevs, selected_camera_azims, use_abs_coor=True) position_maps = self.render_position_multiview( selected_camera_elevs, selected_camera_azims) camera_info = [(((azim // 30) + 9) % 12) // {-20: 1, 0: 1, 20: 1, -90: 3, 90: 3}[ elev] + {-20: 0, 0: 12, 20: 24, -90: 36, 90: 40}[elev] for azim, elev in zip(selected_camera_azims, selected_camera_elevs)] multiviews = self.models['multiview_model'](images_prompt, normal_maps + position_maps, camera_info) for i in range(len(multiviews)): # multiviews[i] = self.models['super_model'](multiviews[i]) multiviews[i] = multiviews[i].resize( (self.config.render_size, self.config.render_size)) texture, mask = self.bake_from_multiview(multiviews, selected_camera_elevs, selected_camera_azims, selected_view_weights, method=self.config.merge_method) mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8) texture = self.texture_inpaint(texture, mask_np) self.render.set_texture(texture) textured_mesh = self.render.save_mesh() return textured_mesh