Spaces:
Sleeping
Sleeping
File size: 5,788 Bytes
b2a27a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# -*- coding: utf-8 -*-
import os
from skimage.morphology import remove_small_objects
from skimage.measure import label
import numpy as np
from PIL import Image
import cv2
from torchvision import transforms
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
def find_bounding_box(gray_image):
_, binary_image = cv2.threshold(gray_image, 1, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
max_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(max_contour)
return x, y, w, h
def load_image(img_path, bg_color=None, rmbg_net=None, padding_ratio=0.1):
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
if img is None:
return f"invalid image path {img_path}"
def is_valid_alpha(alpha, min_ratio = 0.01):
bins = 20
if isinstance(alpha, np.ndarray):
hist = cv2.calcHist([alpha], [0], None, [bins], [0, 256])
else:
hist = torch.histc(alpha, bins=bins, min=0, max=1)
min_hist_val = alpha.shape[0] * alpha.shape[1] * min_ratio
return hist[0] >= min_hist_val and hist[-1] >= min_hist_val
def rmbg(image: torch.Tensor) -> torch.Tensor:
image = TF.normalize(image, [0.5,0.5,0.5], [1.0,1.0,1.0]).unsqueeze(0)
result=rmbg_net(image)
return result[0][0]
if len(img.shape) == 2:
num_channels = 1
else:
num_channels = img.shape[2]
# check if too large
height, width = img.shape[:2]
if height > width:
scale = 2000 / height
else:
scale = 2000 / width
if scale < 1:
new_size = (int(width * scale), int(height * scale))
img = cv2.resize(img, new_size, interpolation=cv2.INTER_AREA)
if img.dtype != 'uint8':
img = (img * (255. / np.iinfo(img.dtype).max)).astype(np.uint8)
rgb_image = None
alpha = None
if num_channels == 1:
rgb_image = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
elif num_channels == 3:
rgb_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
elif num_channels == 4:
rgb_image = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
b, g, r, alpha = cv2.split(img)
if not is_valid_alpha(alpha):
alpha = None
else:
alpha_gpu = torch.from_numpy(alpha).unsqueeze(0).cuda().float() / 255.
else:
return f"invalid image: channels {num_channels}"
rgb_image_gpu = torch.from_numpy(rgb_image).cuda().float().permute(2, 0, 1) / 255.
if alpha is None:
resize_transform = transforms.Resize((384, 384), antialias=True)
rgb_image_resized = resize_transform(rgb_image_gpu)
normalize_image = rgb_image_resized * 2 - 1
mean_color = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).cuda()
resize_transform = transforms.Resize((1024, 1024), antialias=True)
rgb_image_resized = resize_transform(rgb_image_gpu)
max_value = rgb_image_resized.flatten().max()
if max_value < 1e-3:
return "invalid image: pure black image"
normalize_image = rgb_image_resized / max_value - mean_color
normalize_image = normalize_image.unsqueeze(0)
resize_transform = transforms.Resize((rgb_image_gpu.shape[1], rgb_image_gpu.shape[2]), antialias=True)
# seg from rmbg
alpha_gpu_rmbg = rmbg(rgb_image_resized)
alpha_gpu_rmbg = alpha_gpu_rmbg.squeeze(0)
alpha_gpu_rmbg = resize_transform(alpha_gpu_rmbg)
ma, mi = alpha_gpu_rmbg.max(), alpha_gpu_rmbg.min()
alpha_gpu_rmbg = (alpha_gpu_rmbg - mi) / (ma - mi)
alpha_gpu = alpha_gpu_rmbg
alpha_gpu_tmp = alpha_gpu * 255
alpha = alpha_gpu_tmp.to(torch.uint8).squeeze().cpu().numpy()
_, alpha = cv2.threshold(alpha, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
labeled_alpha = label(alpha)
cleaned_alpha = remove_small_objects(labeled_alpha, min_size=200)
cleaned_alpha = (cleaned_alpha > 0).astype(np.uint8)
alpha = cleaned_alpha * 255
alpha_gpu = torch.from_numpy(cleaned_alpha).cuda().float().unsqueeze(0)
x, y, w, h = find_bounding_box(alpha)
# If alpha is provided, the bounds of all foreground are used
else:
rows, cols = np.where(alpha > 0)
if rows.size > 0 and cols.size > 0:
x_min = np.min(cols)
y_min = np.min(rows)
x_max = np.max(cols)
y_max = np.max(rows)
width = x_max - x_min + 1
height = y_max - y_min + 1
x, y, w, h = x_min, y_min, width, height
if np.all(alpha==0):
raise ValueError(f"input image too small")
bg_gray = bg_color[0]
bg_color = torch.from_numpy(bg_color).float().cuda().repeat(alpha_gpu.shape[1], alpha_gpu.shape[2], 1).permute(2, 0, 1)
rgb_image_gpu = rgb_image_gpu * alpha_gpu + bg_color * (1 - alpha_gpu)
padding_size = [0] * 6
if w > h:
padding_size[0] = int(w * padding_ratio)
padding_size[2] = int(padding_size[0] + (w - h) / 2)
else:
padding_size[2] = int(h * padding_ratio)
padding_size[0] = int(padding_size[2] + (h - w) / 2)
padding_size[1] = padding_size[0]
padding_size[3] = padding_size[2]
padded_tensor = F.pad(rgb_image_gpu[:, y:(y+h), x:(x+w)], pad=tuple(padding_size), mode='constant', value=bg_gray)
return padded_tensor
def prepare_image(image_path, bg_color, rmbg_net=None):
if os.path.isfile(image_path):
img_tensor = load_image(image_path, bg_color=bg_color, rmbg_net=rmbg_net)
img_np = img_tensor.permute(1,2,0).cpu().numpy()
img_pil = Image.fromarray((img_np*255).astype(np.uint8))
return img_pil |