Spaces:
Sleeping
Sleeping
File size: 7,594 Bytes
b2a27a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# import os
# import subprocess
# # 🧹 Убираем pyenv, если вдруг остался .python-version
# os.environ.pop("PYENV_VERSION", None)
# # ⚙️ Устанавливаем torch и diso
# subprocess.run(["pip", "install", "torch", "wheel"], check=True)
# subprocess.run([
# "pip", "install", "--no-build-isolation",
# "diso@git+https://github.com/SarahWeiii/diso.git"
# ], check=True)
# # ✅ Только теперь импортируем всё остальное
# import gradio as gr
# import uuid
# import torch
# import zipfile
# import requests
# from inference_triposg import run_triposg
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline
# from briarmbg import BriaRMBG
# # === Настройки устройства ===
# # device = "cuda" if torch.cuda.is_available() else "cpu"
# # dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# # dtype = torch.float32
# device = "cuda" if torch.cuda.is_available() else "cpu"
# dtype = torch.float16 if device == "cuda" else torch.float32
# # === Проверка и загрузка весов ===
# weights_dir = "pretrained_weights"
# triposg_path = os.path.join(weights_dir, "TripoSG")
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
# print("📦 Downloading pretrained weights from Hugging Face Dataset...")
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
# zip_path = "pretrained_models.zip"
# with requests.get(url, stream=True) as r:
# r.raise_for_status()
# with open(zip_path, "wb") as f:
# for chunk in r.iter_content(chunk_size=8192):
# f.write(chunk)
# print("📦 Extracting weights...")
# with zipfile.ZipFile(zip_path, "r") as zip_ref:
# zip_ref.extractall(weights_dir)
# os.remove(zip_path)
# print("✅ Weights ready.")
# # === Загрузка моделей ===
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
# rmbg_net.eval()
# # === Функция генерации ===
# def generate(file):
# temp_id = str(uuid.uuid4())
# input_path = f"/tmp/{temp_id}.png"
# output_path = f"/tmp/{temp_id}.glb"
# with open(input_path, "wb") as f:
# f.write(file)
# print("[DEBUG] Generating mesh...")
# try:
# mesh = run_triposg(
# pipe=pipe,
# image_input=input_path,
# rmbg_net=rmbg_net,
# seed=42,
# num_inference_steps=25,
# guidance_scale=5.0,
# faces=-1,
# )
# # mesh.export(output_path)
# if mesh is None:
# raise ValueError("Mesh generation failed")
# mesh.export(output_path)
# print(f"[DEBUG] Mesh saved to {output_path}")
# # return output_path
# if os.path.exists(output_path):
# return output_path
# else:
# return "Error: mesh export failed or file not found"
# except Exception as e:
# print("[ERROR]", e)
# return f"Error: {e}"
# # === Gradio-интерфейс ===
# demo = gr.Interface(
# fn=generate,
# inputs=gr.File(type="binary", label="Upload image"),
# outputs=gr.File(label="Generated .glb model"),
# title="TripoSG Image-to-3D",
# description="Upload an image and get back a 3D GLB model.",
# )
# # # === ВАЖНО: переменная должна называться `app` ===
# # app = demo.launch(inline=True, share=False, prevent_thread_lock=True)
# demo.launch()
import os
import subprocess
# Убираем pyenv, если вдруг остался .python-version
os.environ.pop("PYENV_VERSION", None)
# Установка зависимостей
subprocess.run(["pip", "install", "torch", "wheel"], check=True)
subprocess.run([
"pip", "install", "--no-build-isolation",
"diso@git+https://github.com/SarahWeiii/diso.git"
], check=True)
# Импорты
import gradio as gr
import uuid
import torch
import zipfile
import requests
import traceback
from inference_triposg import run_triposg
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
from briarmbg import BriaRMBG
# Настройки устройства
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# Загрузка весов
weights_dir = "pretrained_weights"
triposg_path = os.path.join(weights_dir, "TripoSG")
rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
print("📦 Downloading pretrained weights...")
url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
zip_path = "pretrained_models.zip"
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(zip_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
print("📦 Extracting weights...")
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(weights_dir)
os.remove(zip_path)
print("✅ Weights ready.")
# Загрузка моделей
pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
rmbg_net.eval()
# Генерация .glb
def generate(image_path):
print("[API CALL] image_path received:", image_path)
print("[API CALL] File exists:", os.path.exists(image_path))
temp_id = str(uuid.uuid4())
output_path = f"/tmp/{temp_id}.glb"
print("[DEBUG] Generating mesh from:", image_path)
try:
mesh = run_triposg(
pipe=pipe,
image_input=image_path,
rmbg_net=rmbg_net,
seed=42,
num_inference_steps=25,
guidance_scale=5.0,
faces=-1,
)
if mesh is None:
raise ValueError("Mesh generation failed")
mesh.export(output_path)
print(f"[DEBUG] Mesh saved to {output_path}")
return output_path if os.path.exists(output_path) else "Error: output file not found"
# except Exception as e:
# print("[ERROR]", e)
# return f"Error: {e}"
except Exception as e:
import traceback
print("[ERROR]", e)
traceback.print_exc() # ← выведет полную трассировку в логи
return f"Error: {e}"
# Интерфейс Gradio
demo = gr.Interface(
fn=generate,
inputs=gr.Image(type="filepath", label="Upload image"),
outputs=gr.File(label="Download .glb"),
title="TripoSG Image to 3D",
description="Upload an image to generate a 3D model (.glb)",
)
# Запуск
demo.launch()
# import gradio as gr
# import uuid
# import os
# import traceback
# def generate(image_path):
# try:
# print("[DEBUG] got image path:", image_path)
# print("[DEBUG] file exists:", os.path.exists(image_path))
# out_path = f"/tmp/{uuid.uuid4()}.txt"
# with open(out_path, "w") as f:
# f.write(f"Received: {image_path}")
# return out_path
# except Exception as e:
# print("[ERROR]", e)
# traceback.print_exc()
# return f"Error: {e}"
# demo = gr.Interface(
# fn=generate,
# inputs=gr.Image(type="filepath"),
# outputs=gr.File()
# )
# demo.launch()
|