File size: 5,077 Bytes
b2a27a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dcf605
b2a27a7
 
 
 
 
 
 
 
 
 
0dcf605
b2a27a7
 
 
 
 
 
 
 
 
0dcf605
b2a27a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dcf605
d22bdf6
 
 
 
 
 
 
 
 
0dcf605
 
 
 
 
 
 
 
 
 
 
 
 
b2a27a7
0dcf605
 
 
b2a27a7
 
d22bdf6
 
 
 
0dcf605
 
 
 
d22bdf6
0dcf605
d22bdf6
b2a27a7
0dcf605
b2a27a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144fa82
b2a27a7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import os
import sys
from glob import glob
from typing import Any, Union

import numpy as np
import torch
import trimesh
from huggingface_hub import snapshot_download
from PIL import Image

sys.path.append(os.path.dirname(os.path.abspath(__file__)))

from triposg.pipelines.pipeline_triposg import TripoSGPipeline
from image_process import prepare_image
from briarmbg import BriaRMBG

import pymeshlab


@torch.no_grad()
def run_triposg(
    pipe: Any,
    image_input: Union[str, Image.Image],
    rmbg_net: Any,
    seed: int,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.0,
    faces: int = -1,
    octree_depth: int = 9, # 👈 добавлено_et
) -> trimesh.Scene:
    print("[DEBUG] Preparing image...")
    img_pil = prepare_image(image_input, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)

    print("[DEBUG] Running TripoSG pipeline...")
    outputs = pipe(
        image=img_pil,
        generator=torch.Generator(device=pipe.device).manual_seed(seed),
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        flash_octree_depth=octree_depth, # 👈 добавлено_et
    ).samples[0]

    print("[DEBUG] TripoSG output keys:", type(outputs), outputs[0].shape, outputs[1].shape)

    mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
    print(f"[DEBUG] Mesh created: {mesh.vertices.shape[0]} verts / {mesh.faces.shape[0]} faces")

    if faces > 0:
        print(f"[DEBUG] Simplifying mesh to {faces} faces")
        mesh = simplify_mesh(mesh, faces) # 👈 добавлено_et

    return mesh


def mesh_to_pymesh(vertices, faces):
    mesh = pymeshlab.Mesh(vertex_matrix=vertices, face_matrix=faces)
    ms = pymeshlab.MeshSet()
    ms.add_mesh(mesh)
    return ms

def pymesh_to_trimesh(mesh):
    verts = mesh.vertex_matrix()#.tolist()
    faces = mesh.face_matrix()#.tolist()
    return trimesh.Trimesh(vertices=verts, faces=faces)  #, vID, fID

# old version
# def simplify_mesh(mesh: trimesh.Trimesh, n_faces):
#     if mesh.faces.shape[0] > n_faces:
#         ms = mesh_to_pymesh(mesh.vertices, mesh.faces)
#         ms.meshing_merge_close_vertices()
#         ms.meshing_decimation_quadric_edge_collapse(targetfacenum = n_faces)
#         return pymesh_to_trimesh(ms.current_mesh())
#     else:
#         return mesh

# new version
# def simplify_mesh(mesh: trimesh.Trimesh, n_faces):
#     if mesh.faces.shape[0] > n_faces:
#         ms = mesh_to_pymesh(mesh.vertices, mesh.faces)
#         ms.meshing_merge_close_vertices()
#         ms.meshing_decimation_quadric_edge_collapse(targetfacenum=n_faces)
#         simplified = ms.current_mesh()
#         if simplified is None or simplified.face_number() == 0:
#             return None
#         return pymesh_to_trimesh(simplified)
#     return mesh

# new version demo
def simplify_mesh(mesh: trimesh.Trimesh, n_faces):
    original_faces = mesh.faces.shape[0]  # 👈 сохраняем исходное количество

    if original_faces > n_faces:
        ms = mesh_to_pymesh(mesh.vertices, mesh.faces)
        ms.meshing_merge_close_vertices()
        ms.meshing_decimation_quadric_edge_collapse(targetfacenum=n_faces)
        simplified = ms.current_mesh()
        if simplified is None or simplified.face_number() == 0:
            return None

        simplified_faces = simplified.face_number()
        print(f"[DEBUG] Simplified mesh: {original_faces}{simplified_faces} faces")  # 👈 лог здесь

        return pymesh_to_trimesh(simplified)

    return mesh


if __name__ == "__main__":
    device = "cuda"
    dtype = torch.float16

    parser = argparse.ArgumentParser()
    parser.add_argument("--image-input", type=str, required=True)
    parser.add_argument("--output-path", type=str, default="./output.glb")
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--num-inference-steps", type=int, default=50)
    parser.add_argument("--guidance-scale", type=float, default=7.0)
    parser.add_argument("--faces", type=int, default=-1)
    args = parser.parse_args()

    # download pretrained weights
    triposg_weights_dir = "pretrained_weights/TripoSG"
    rmbg_weights_dir = "pretrained_weights/RMBG-1.4"
    snapshot_download(repo_id="VAST-AI/TripoSG", local_dir=triposg_weights_dir)
    snapshot_download(repo_id="briaai/RMBG-1.4", local_dir=rmbg_weights_dir)

    # init rmbg model for background removal
    rmbg_net = BriaRMBG.from_pretrained(rmbg_weights_dir).to(device)
    rmbg_net.eval() 

    # init tripoSG pipeline
    pipe: TripoSGPipeline = TripoSGPipeline.from_pretrained(triposg_weights_dir).to(device, dtype)

    # run inference
    run_triposg(
        pipe,
        image_input=args.image_input,
        rmbg_net=rmbg_net,
        seed=args.seed,
        num_inference_steps=args.num_inference_steps,
        guidance_scale=args.guidance_scale,
        faces=args.faces,
        octree_depth=octree_depth,
    ).export(args.output_path)
    print(f"Mesh saved to {args.output_path}")