File size: 20,516 Bytes
b2a27a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3806ac
b2a27a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5c913b
b2a27a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import numpy as np
import torch
import torch.nn as nn
import scipy.ndimage
from skimage import measure
import torch.nn.functional as F
from diso import DiffDMC
from einops import repeat
from triposg.utils.typing import *

def generate_dense_grid_points_gpu(bbox_min: torch.Tensor,
                                   bbox_max: torch.Tensor,
                                   octree_depth: int,
                                   indexing: str = "ij"):
    length = bbox_max - bbox_min
    num_cells = 2 ** octree_depth
    device = bbox_min.device
    
    x = torch.linspace(bbox_min[0], bbox_max[0], int(num_cells), dtype=torch.float16, device=device)
    y = torch.linspace(bbox_min[1], bbox_max[1], int(num_cells), dtype=torch.float16, device=device)
    z = torch.linspace(bbox_min[2], bbox_max[2], int(num_cells), dtype=torch.float16, device=device)
    
    xs, ys, zs = torch.meshgrid(x, y, z, indexing=indexing)
    xyz = torch.stack((xs, ys, zs), dim=-1)
    xyz = xyz.view(-1, 3)
    grid_size = [int(num_cells), int(num_cells), int(num_cells)]

    return xyz, grid_size, length

def find_mesh_grid_coordinates_fast_gpu(occupancy_grid, n_limits=-1):
    core_grid = occupancy_grid[1:-1, 1:-1, 1:-1]
    occupied = core_grid > 0

    neighbors_unoccupied = (
        (occupancy_grid[:-2, :-2, :-2] < 0)
        | (occupancy_grid[:-2, :-2, 1:-1] < 0)
        | (occupancy_grid[:-2, :-2, 2:] < 0)  # x-1, y-1, z-1/0/1
        | (occupancy_grid[:-2, 1:-1, :-2] < 0)
        | (occupancy_grid[:-2, 1:-1, 1:-1] < 0)
        | (occupancy_grid[:-2, 1:-1, 2:] < 0)  # x-1, y0, z-1/0/1
        | (occupancy_grid[:-2, 2:, :-2] < 0)
        | (occupancy_grid[:-2, 2:, 1:-1] < 0)
        | (occupancy_grid[:-2, 2:, 2:] < 0)  # x-1, y+1, z-1/0/1
        | (occupancy_grid[1:-1, :-2, :-2] < 0)
        | (occupancy_grid[1:-1, :-2, 1:-1] < 0)
        | (occupancy_grid[1:-1, :-2, 2:] < 0)  # x0, y-1, z-1/0/1
        | (occupancy_grid[1:-1, 1:-1, :-2] < 0)
        | (occupancy_grid[1:-1, 1:-1, 2:] < 0)  # x0, y0, z-1/1
        | (occupancy_grid[1:-1, 2:, :-2] < 0)
        | (occupancy_grid[1:-1, 2:, 1:-1] < 0)
        | (occupancy_grid[1:-1, 2:, 2:] < 0)  # x0, y+1, z-1/0/1
        | (occupancy_grid[2:, :-2, :-2] < 0)
        | (occupancy_grid[2:, :-2, 1:-1] < 0)
        | (occupancy_grid[2:, :-2, 2:] < 0)  # x+1, y-1, z-1/0/1
        | (occupancy_grid[2:, 1:-1, :-2] < 0)
        | (occupancy_grid[2:, 1:-1, 1:-1] < 0)
        | (occupancy_grid[2:, 1:-1, 2:] < 0)  # x+1, y0, z-1/0/1
        | (occupancy_grid[2:, 2:, :-2] < 0)
        | (occupancy_grid[2:, 2:, 1:-1] < 0)
        | (occupancy_grid[2:, 2:, 2:] < 0)  # x+1, y+1, z-1/0/1
    )
    core_mesh_coords = torch.nonzero(occupied & neighbors_unoccupied, as_tuple=False) + 1

    if n_limits != -1 and core_mesh_coords.shape[0] > n_limits:
        print(f"core mesh coords {core_mesh_coords.shape[0]} is too large, limited to {n_limits}")
        ind = np.random.choice(core_mesh_coords.shape[0], n_limits, True)
        core_mesh_coords = core_mesh_coords[ind]

    return core_mesh_coords

def find_candidates_band(occupancy_grid: torch.Tensor, band_threshold: float, n_limits: int = -1) -> torch.Tensor:
    """
    Returns the coordinates of all voxels in the occupancy_grid where |value| < band_threshold.

    Args:
        occupancy_grid (torch.Tensor): A 3D tensor of SDF values.
        band_threshold (float): The threshold below which |SDF| must be to include the voxel.
        n_limits (int): Maximum number of points to return (-1 for no limit)

    Returns:
        torch.Tensor: A 2D tensor of coordinates (N x 3) where each row is [x, y, z].
    """
    core_grid = occupancy_grid[1:-1, 1:-1, 1:-1]  
    # logits to sdf
    core_grid = torch.sigmoid(core_grid) * 2 - 1  
    # Create a boolean mask for all cells in the band
    in_band = torch.abs(core_grid) < band_threshold

    # Get coordinates of all voxels in the band
    core_mesh_coords = torch.nonzero(in_band, as_tuple=False) + 1

    if n_limits != -1 and core_mesh_coords.shape[0] > n_limits:
        print(f"core mesh coords {core_mesh_coords.shape[0]} is too large, limited to {n_limits}")
        ind = np.random.choice(core_mesh_coords.shape[0], n_limits, True)
        core_mesh_coords = core_mesh_coords[ind]

    return core_mesh_coords 

def expand_edge_region_fast(edge_coords, grid_size):
    expanded_tensor = torch.zeros(grid_size, grid_size, grid_size, device='cuda', dtype=torch.float16, requires_grad=False)
    expanded_tensor[edge_coords[:, 0], edge_coords[:, 1], edge_coords[:, 2]] = 1
    if grid_size < 512:
        kernel_size = 5
        pooled_tensor = torch.nn.functional.max_pool3d(expanded_tensor.unsqueeze(0).unsqueeze(0), kernel_size=kernel_size, stride=1, padding=2).squeeze()
    else:
        kernel_size = 3
        pooled_tensor = torch.nn.functional.max_pool3d(expanded_tensor.unsqueeze(0).unsqueeze(0), kernel_size=kernel_size, stride=1, padding=1).squeeze()
    expanded_coords_low_res = torch.nonzero(pooled_tensor, as_tuple=False).to(torch.int16)

    expanded_coords_high_res = torch.stack([
        torch.cat((expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2 + 1, expanded_coords_low_res[:, 0] * 2 + 1, expanded_coords_low_res[:, 0] * 2 + 1, expanded_coords_low_res[:, 0] * 2 + 1)),
        torch.cat((expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2+1, expanded_coords_low_res[:, 1] * 2 + 1, expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2 + 1, expanded_coords_low_res[:, 1] * 2 + 1)),
        torch.cat((expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2+1, expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2 + 1, expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2+1, expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2 + 1))
    ], dim=1)

    return expanded_coords_high_res

def zoom_block(block, scale_factor, order=3):
    block = block.astype(np.float32)
    return scipy.ndimage.zoom(block, scale_factor, order=order)

def parallel_zoom(occupancy_grid, scale_factor):
    result = torch.nn.functional.interpolate(occupancy_grid.unsqueeze(0).unsqueeze(0), scale_factor=scale_factor)
    return result.squeeze(0).squeeze(0)


@torch.no_grad()
def hierarchical_extract_geometry(geometric_func: Callable,
                     device: torch.device,
                     bounds: Union[Tuple[float], List[float], float] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
                     dense_octree_depth: int = 9,
                     hierarchical_octree_depth: int = 9,
                     ):
    """

    Args:
        geometric_func:
        device:
        bounds:
        dense_octree_depth:
        hierarchical_octree_depth:
    Returns:

    """
    if isinstance(bounds, float):
        bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]

    bbox_min = torch.tensor(bounds[0:3]).to(device)
    bbox_max = torch.tensor(bounds[3:6]).to(device)
    bbox_size = bbox_max - bbox_min

    xyz_samples, grid_size, length = generate_dense_grid_points_gpu(
        bbox_min=bbox_min,
        bbox_max=bbox_max,
        octree_depth=dense_octree_depth,
        indexing="ij"
    )
    
    print(f'step 1 query num: {xyz_samples.shape[0]}')
    grid_logits = geometric_func(xyz_samples.unsqueeze(0)).to(torch.float16).view(grid_size[0], grid_size[1], grid_size[2])
    # print(f'step 1 grid_logits shape: {grid_logits.shape}')
    for i in range(hierarchical_octree_depth - dense_octree_depth):
        curr_octree_depth = dense_octree_depth + i + 1
        # upsample
        grid_size = 2**curr_octree_depth
        normalize_offset = grid_size / 2
        high_res_occupancy = parallel_zoom(grid_logits, 2)

        band_threshold = 1.0
        edge_coords = find_candidates_band(grid_logits, band_threshold)
        expanded_coords = expand_edge_region_fast(edge_coords, grid_size=int(grid_size/2)).to(torch.float16)
        print(f'step {i+2} query num: {len(expanded_coords)}')
        expanded_coords_norm = (expanded_coords - normalize_offset) * (abs(bounds[0]) / normalize_offset)

        all_logits = None

        all_logits = geometric_func(expanded_coords_norm.unsqueeze(0)).to(torch.float16)
        all_logits = torch.cat([expanded_coords_norm, all_logits[0]], dim=1)
        # print("all logits shape = ", all_logits.shape)

        indices = all_logits[..., :3]
        indices = indices * (normalize_offset / abs(bounds[0]))  + normalize_offset
        indices = indices.type(torch.IntTensor)
        values = all_logits[:, 3]
        # breakpoint()
        high_res_occupancy[indices[:, 0], indices[:, 1], indices[:, 2]] = values
        grid_logits = high_res_occupancy
        torch.cuda.empty_cache()
    mesh_v_f = []
    try:
        print("final grids shape = ", grid_logits.shape)
        vertices, faces, normals, _ = measure.marching_cubes(grid_logits.float().cpu().numpy(), 0, method="lewiner")
        vertices = vertices / (2**hierarchical_octree_depth) * bbox_size.cpu().numpy() + bbox_min.cpu().numpy()
        mesh_v_f = (vertices.astype(np.float32), np.ascontiguousarray(faces))
    except Exception as e:
        print(e)
        torch.cuda.empty_cache()
        mesh_v_f = (None, None)

    return [mesh_v_f]

def extract_near_surface_volume_fn(input_tensor: torch.Tensor, alpha: float):
    """
    Args:
        input_tensor: shape [D, D, D], torch.float16
        alpha: isosurface offset
    Returns:
        mask: shape [D, D, D], torch.int32
    """
    device = input_tensor.device
    D = input_tensor.shape[0]
    signed_val = 0.0

    # add isosurface offset and exclude invalid value
    val = input_tensor + alpha
    valid_mask = val > -9000

    # obtain neighbors
    def get_neighbor(t, shift, axis):
        if shift == 0:
            return t.clone()

        pad_dims = [0, 0, 0, 0, 0, 0]  # [x_front,x_back,y_front,y_back,z_front,z_back]

        if axis == 0:  # x axis
            pad_idx = 0 if shift > 0 else 1
            pad_dims[pad_idx] = abs(shift)
        elif axis == 1:  # y axis
            pad_idx = 2 if shift > 0 else 3
            pad_dims[pad_idx] = abs(shift)
        elif axis == 2:  # z axis
            pad_idx = 4 if shift > 0 else 5
            pad_dims[pad_idx] = abs(shift)

        # Apply padding with replication at boundaries
        padded = F.pad(t.unsqueeze(0).unsqueeze(0), pad_dims[::-1], mode='replicate')

        # Create dynamic slicing indices
        slice_dims = [slice(None)] * 3
        if axis == 0:  # x axis
            if shift > 0:
                slice_dims[0] = slice(shift, None)
            else:
                slice_dims[0] = slice(None, shift)
        elif axis == 1:  # y axis
            if shift > 0:
                slice_dims[1] = slice(shift, None)
            else:
                slice_dims[1] = slice(None, shift)
        elif axis == 2:  # z axis
            if shift > 0:
                slice_dims[2] = slice(shift, None)
            else:
                slice_dims[2] = slice(None, shift)

        # Apply slicing and restore dimensions
        padded = padded.squeeze(0).squeeze(0)
        sliced = padded[slice_dims]
        return sliced

    # Get neighbors in all directions
    left = get_neighbor(val, 1, axis=0)  # x axis
    right = get_neighbor(val, -1, axis=0)
    back = get_neighbor(val, 1, axis=1)  # y axis
    front = get_neighbor(val, -1, axis=1)
    down = get_neighbor(val, 1, axis=2)  # z axis
    up = get_neighbor(val, -1, axis=2)

    # Handle invalid boundary values
    def safe_where(neighbor):
        return torch.where(neighbor > -9000, neighbor, val)

    left = safe_where(left)
    right = safe_where(right)
    back = safe_where(back)
    front = safe_where(front)
    down = safe_where(down)
    up = safe_where(up)

    # Calculate sign consistency
    sign = torch.sign(val.to(torch.float32))
    neighbors_sign = torch.stack([
        torch.sign(left.to(torch.float32)),
        torch.sign(right.to(torch.float32)),
        torch.sign(back.to(torch.float32)),
        torch.sign(front.to(torch.float32)),
        torch.sign(down.to(torch.float32)),
        torch.sign(up.to(torch.float32))
    ], dim=0)

    # Check if all signs are consistent
    same_sign = torch.all(neighbors_sign == sign, dim=0)

    # Generate final mask
    mask = (~same_sign).to(torch.int32)
    return mask * valid_mask.to(torch.int32)


def generate_dense_grid_points_2(
    bbox_min: np.ndarray,
    bbox_max: np.ndarray,
    octree_resolution: int,
    indexing: str = "ij",
):
    length = bbox_max - bbox_min
    num_cells = octree_resolution

    x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
    y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
    z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
    [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
    xyz = np.stack((xs, ys, zs), axis=-1)
    grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]

    return xyz, grid_size, length

@torch.no_grad()
def flash_extract_geometry(
    latents: torch.FloatTensor,
    vae: Callable,
    bounds: Union[Tuple[float], List[float], float] = 1.01,
    num_chunks: int = 10000,
    mc_level: float = 0.0,
    octree_depth: int = 9, # quality mesh 8,9,10
    min_resolution: int = 63,
    mini_grid_num: int = 4,
    **kwargs,
):
    geo_decoder = vae.decoder
    device = latents.device
    dtype = latents.dtype
    # resolution to depth
    octree_resolution = 2 ** octree_depth
    resolutions = []
    if octree_resolution < min_resolution:
        resolutions.append(octree_resolution)
    while octree_resolution >= min_resolution:
        resolutions.append(octree_resolution)
        octree_resolution = octree_resolution // 2
    resolutions.reverse()
    resolutions[0] = round(resolutions[0] / mini_grid_num) * mini_grid_num - 1
    for i, resolution in enumerate(resolutions[1:]):
        resolutions[i + 1] = resolutions[0] * 2 ** (i + 1)


    # 1. generate query points
    if isinstance(bounds, float):
        bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
    bbox_min = np.array(bounds[0:3])
    bbox_max = np.array(bounds[3:6])
    bbox_size = bbox_max - bbox_min

    xyz_samples, grid_size, length = generate_dense_grid_points_2(
        bbox_min=bbox_min,
        bbox_max=bbox_max,
        octree_resolution=resolutions[0],
        indexing="ij"
    )

    dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype)
    dilate.weight = torch.nn.Parameter(torch.ones(dilate.weight.shape, dtype=dtype, device=device))

    grid_size = np.array(grid_size)

    # 2. latents to 3d volume
    xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype)
    batch_size = latents.shape[0]
    mini_grid_size = xyz_samples.shape[0] // mini_grid_num
    xyz_samples = xyz_samples.view(
        mini_grid_num, mini_grid_size,
        mini_grid_num, mini_grid_size,
        mini_grid_num, mini_grid_size, 3
    ).permute(
        0, 2, 4, 1, 3, 5, 6
    ).reshape(
        -1, mini_grid_size * mini_grid_size * mini_grid_size, 3
    )
    batch_logits = []
    num_batchs = max(num_chunks // xyz_samples.shape[1], 1)
    for start in range(0, xyz_samples.shape[0], num_batchs):
        queries = xyz_samples[start: start + num_batchs, :]
        batch = queries.shape[0]
        batch_latents = repeat(latents.squeeze(0), "p c -> b p c", b=batch)
        # geo_decoder.set_topk(True)
        geo_decoder.set_topk(False)
        logits = vae.decode(batch_latents, queries).sample
        batch_logits.append(logits)
    grid_logits = torch.cat(batch_logits, dim=0).reshape(
        mini_grid_num, mini_grid_num, mini_grid_num,
        mini_grid_size, mini_grid_size,
        mini_grid_size
    ).permute(0, 3, 1, 4, 2, 5).contiguous().view(
        (batch_size, grid_size[0], grid_size[1], grid_size[2])
    )

    for octree_depth_now in resolutions[1:]:
        grid_size = np.array([octree_depth_now + 1] * 3)
        resolution = bbox_size / octree_depth_now
        next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device)
        next_logits = torch.full(next_index.shape, -10000., dtype=dtype, device=device)
        curr_points = extract_near_surface_volume_fn(grid_logits.squeeze(0), mc_level)
        curr_points += grid_logits.squeeze(0).abs() < 0.95

        if octree_depth_now == resolutions[-1]:
            expand_num = 0
        else:
            expand_num = 1
        for i in range(expand_num):
            curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
            curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
        (cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0)

        next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
        for i in range(2 - expand_num):
            next_index = dilate(next_index.unsqueeze(0)).squeeze(0)
        nidx = torch.where(next_index > 0)

        next_points = torch.stack(nidx, dim=1)
        next_points = (next_points * torch.tensor(resolution, dtype=torch.float32, device=device) +
                        torch.tensor(bbox_min, dtype=torch.float32, device=device))

        query_grid_num = 6
        min_val = next_points.min(axis=0).values
        max_val = next_points.max(axis=0).values
        vol_queries_index = (next_points - min_val) / (max_val - min_val) * (query_grid_num - 0.001)
        index = torch.floor(vol_queries_index).long()
        index = index[..., 0] * (query_grid_num ** 2) + index[..., 1] * query_grid_num + index[..., 2]
        index = index.sort()
        next_points = next_points[index.indices].unsqueeze(0).contiguous()
        unique_values = torch.unique(index.values, return_counts=True)
        grid_logits = torch.zeros((next_points.shape[1]), dtype=latents.dtype, device=latents.device)
        input_grid = [[], []]
        logits_grid_list = []
        start_num = 0
        sum_num = 0
        for grid_index, count in zip(unique_values[0].cpu().tolist(), unique_values[1].cpu().tolist()):
            if sum_num + count < num_chunks or sum_num == 0:
                sum_num += count
                input_grid[0].append(grid_index)
                input_grid[1].append(count)
            else:
                # geo_decoder.set_topk(input_grid)
                geo_decoder.set_topk(False)
                logits_grid = vae.decode(latents,next_points[:, start_num:start_num + sum_num]).sample
                start_num = start_num + sum_num
                logits_grid_list.append(logits_grid)
                input_grid = [[grid_index], [count]]
                sum_num = count
        if sum_num > 0:
            # geo_decoder.set_topk(input_grid)
            geo_decoder.set_topk(False)
            logits_grid = vae.decode(latents,next_points[:, start_num:start_num + sum_num]).sample
            logits_grid_list.append(logits_grid)
        logits_grid = torch.cat(logits_grid_list, dim=1)
        grid_logits[index.indices] = logits_grid.squeeze(0).squeeze(-1)
        next_logits[nidx] = grid_logits
        grid_logits = next_logits.unsqueeze(0)
    
    grid_logits[grid_logits == -10000.] = float('nan')
    torch.cuda.empty_cache()
    mesh_v_f = []
    grid_logits = grid_logits[0]
    try:
        print("final grids shape = ", grid_logits.shape)

        dmc = DiffDMC(dtype=torch.float32).to(grid_logits.device)
        sdf = -grid_logits / octree_resolution
        sdf = sdf.to(torch.float32).contiguous()

        vertices, faces = dmc(sdf)
        vertices = vertices.detach().cpu().numpy()
        faces = faces.detach().cpu().numpy()[:, ::-1]
        vertices = vertices / (2 ** octree_depth) * bbox_size + bbox_min
        # Центрируем
        vertices = vertices - vertices.mean(axis=0)
        # Масштабируем (например, ×100 — сантиметры)
        target_scale = 1.0
        max_extent = np.max(np.linalg.norm(vertices, axis=1))
        scale_factor = target_scale / max_extent
        vertices = vertices * scale_factor

        mesh_v_f = (vertices.astype(np.float32), np.ascontiguousarray(faces))
        


    except Exception as e:
        print(e)
        torch.cuda.empty_cache()
        mesh_v_f = (None, None)

    return [mesh_v_f]