staswrs
fix add normals 2
530f16a
raw
history blame
5.93 kB
import os
import subprocess
# Убираем pyenv
os.environ.pop("PYENV_VERSION", None)
# Установка зависимостей
subprocess.run(["pip", "install", "torch", "wheel"], check=True)
subprocess.run([
"pip", "install", "--no-build-isolation",
"diso@git+https://github.com/SarahWeiii/diso.git"
], check=True)
# Импорты (перенесены после установки зависимостей)
import gradio as gr
import uuid
import torch
import zipfile
import requests
import traceback
import trimesh
import numpy as np
from trimesh.exchange.gltf import export_glb
from inference_triposg import run_triposg
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
from briarmbg import BriaRMBG
print("Trimesh version:", trimesh.__version__)
# Настройки устройства
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# Загрузка весов
weights_dir = "pretrained_weights"
triposg_path = os.path.join(weights_dir, "TripoSG")
rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
print("📦 Downloading pretrained weights...")
url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
zip_path = "pretrained_models.zip"
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(zip_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
print("📦 Extracting weights...")
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(weights_dir)
os.remove(zip_path)
print("✅ Weights ready.")
# Загрузка моделей
pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
rmbg_net.eval()
# Генерация .glb
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
# print("[API CALL] image_path received:", image_path)
# print("[API CALL] File exists:", os.path.exists(image_path))
# temp_id = str(uuid.uuid4())
# output_path = f"/tmp/{temp_id}.glb"
# print("[DEBUG] Generating mesh from:", image_path)
# try:
# mesh = run_triposg(
# pipe=pipe,
# image_input=image_path,
# rmbg_net=rmbg_net,
# seed=42,
# num_inference_steps=int(num_steps),
# guidance_scale=float(guidance_scale),
# faces=int(face_number),
# )
# if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
# raise ValueError("Mesh generation returned an empty mesh")
# mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
# mesh.rezero()
# mesh.fix_normals()
# mesh.apply_translation(-mesh.center_mass)
# # Масштабируем, чтобы модель вписывалась в размер 1x1x1
# # Если нужно будет подгонять под размер в Endless Tools, то можно использовать:
# # scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1))
# # mesh.apply_scale(scale_factor)
# glb_data = mesh.export(file_type='glb')
# with open(output_path, "wb") as f:
# f.write(glb_data)
# print(f"[DEBUG] Mesh saved to {output_path}")
# return output_path if os.path.exists(output_path) else None
# except Exception as e:
# print("[ERROR]", e)
# traceback.print_exc()
# return f"Error: {e}"
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
print("[API CALL] image_path received:", image_path)
print("[API CALL] File exists:", os.path.exists(image_path))
temp_id = str(uuid.uuid4())
output_path = f"/tmp/{temp_id}.glb"
print("[DEBUG] Generating mesh from:", image_path)
try:
mesh = run_triposg(
pipe=pipe,
image_input=image_path,
rmbg_net=rmbg_net,
seed=42,
num_inference_steps=int(num_steps),
guidance_scale=float(guidance_scale),
faces=int(face_number),
)
if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
raise ValueError("Mesh generation returned an empty mesh")
# 🔧 Пересоздаём Trimesh и гарантируем чистоту геометрии
mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=True)
# ✅ Центрируем модель
mesh.apply_translation(-mesh.center_mass)
# ✅ Масштабируем к единичному размеру (все модели ~одинаковые)
scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1))
mesh.apply_scale(scale_factor)
# ✅ Гарантированно пересчитываем нормали
mesh.fix_normals()
print("[DEBUG] Normals present:", mesh.has_vertex_normals)
# 💾 Сохраняем GLB
glb_data = mesh.export(file_type='glb')
with open(output_path, "wb") as f:
f.write(glb_data)
print(f"[DEBUG] Mesh saved to {output_path}")
return output_path if os.path.exists(output_path) else None
except Exception as e:
print("[ERROR]", e)
traceback.print_exc()
return f"Error: {e}"
# Интерфейс Gradio
demo = gr.Interface(
fn=generate,
inputs=gr.Image(type="filepath", label="Upload image"),
outputs=gr.File(label="Download .glb"),
title="TripoSG Image to 3D",
description="Upload an image to generate a 3D model (.glb)",
)
# Запуск
demo.launch()