Spaces:
Sleeping
Sleeping
import os | |
import subprocess | |
# Убираем pyenv, если вдруг остался .python-version | |
os.environ.pop("PYENV_VERSION", None) | |
# Установка зависимостей | |
subprocess.run(["pip", "install", "torch", "wheel"], check=True) | |
subprocess.run([ | |
"pip", "install", "--no-build-isolation", | |
"diso@git+https://github.com/SarahWeiii/diso.git" | |
], check=True) | |
# Импорты | |
import gradio as gr | |
import uuid | |
import torch | |
import zipfile | |
import requests | |
import traceback | |
from inference_triposg import run_triposg | |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline | |
from briarmbg import BriaRMBG | |
# Настройки устройства | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if device == "cuda" else torch.float32 | |
# Загрузка весов | |
weights_dir = "pretrained_weights" | |
triposg_path = os.path.join(weights_dir, "TripoSG") | |
rmbg_path = os.path.join(weights_dir, "RMBG-1.4") | |
if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): | |
print("📦 Downloading pretrained weights...") | |
url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" | |
zip_path = "pretrained_models.zip" | |
with requests.get(url, stream=True) as r: | |
r.raise_for_status() | |
with open(zip_path, "wb") as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
print("📦 Extracting weights...") | |
with zipfile.ZipFile(zip_path, "r") as zip_ref: | |
zip_ref.extractall(weights_dir) | |
os.remove(zip_path) | |
print("✅ Weights ready.") | |
# Загрузка моделей | |
pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) | |
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) | |
rmbg_net.eval() | |
# Генерация .glb | |
# def generate(image_path): | |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
print("[API CALL] image_path received:", image_path) | |
print("[API CALL] File exists:", os.path.exists(image_path)) | |
temp_id = str(uuid.uuid4()) | |
output_path = f"/tmp/{temp_id}.glb" | |
print("[DEBUG] Generating mesh from:", image_path) | |
try: | |
# mesh = run_triposg( | |
# pipe=pipe, | |
# image_input=image_path, | |
# rmbg_net=rmbg_net, | |
# seed=42, | |
# num_inference_steps=25, | |
# guidance_scale=5.0, | |
# faces=-1, | |
# ) | |
mesh = run_triposg( | |
pipe=pipe, | |
image_input=image_path, | |
rmbg_net=rmbg_net, | |
seed=42, | |
num_inference_steps=int(num_steps), | |
guidance_scale=float(guidance_scale), | |
faces=int(face_number), | |
) | |
if mesh is None: | |
raise ValueError("Mesh generation failed") | |
mesh.export(output_path) | |
print(f"[DEBUG] Mesh saved to {output_path}") | |
return output_path if os.path.exists(output_path) else "Error: output file not found" | |
# except Exception as e: | |
# print("[ERROR]", e) | |
# return f"Error: {e}" | |
except Exception as e: | |
import traceback | |
print("[ERROR]", e) | |
traceback.print_exc() # ← выведет полную трассировку в логи | |
return f"Error: {e}" | |
# Интерфейс Gradio | |
demo = gr.Interface( | |
fn=generate, | |
inputs=gr.Image(type="filepath", label="Upload image"), | |
outputs=gr.File(label="Download .glb"), | |
title="TripoSG Image to 3D", | |
description="Upload an image to generate a 3D model (.glb)", | |
) | |
# Запуск | |
demo.launch() | |