Spaces:
Sleeping
Sleeping
# import os | |
# import subprocess | |
# # Убираем pyenv, если вдруг остался .python-version | |
# os.environ.pop("PYENV_VERSION", None) | |
# # Установка зависимостей | |
# subprocess.run(["pip", "install", "torch", "wheel"], check=True) | |
# subprocess.run([ | |
# "pip", "install", "--no-build-isolation", | |
# "diso@git+https://github.com/SarahWeiii/diso.git" | |
# ], check=True) | |
# # Импорты | |
# import gradio as gr | |
# import uuid | |
# import torch | |
# import zipfile | |
# import requests | |
# import traceback | |
# import trimesh | |
# from trimesh.exchange.gltf import export_glb | |
# print("Trimesh version:", trimesh.__version__) | |
# from inference_triposg import run_triposg | |
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline | |
# from briarmbg import BriaRMBG | |
# # Настройки устройства | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# dtype = torch.float16 if device == "cuda" else torch.float32 | |
# # Загрузка весов | |
# weights_dir = "pretrained_weights" | |
# triposg_path = os.path.join(weights_dir, "TripoSG") | |
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4") | |
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): | |
# print("📦 Downloading pretrained weights...") | |
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" | |
# zip_path = "pretrained_models.zip" | |
# with requests.get(url, stream=True) as r: | |
# r.raise_for_status() | |
# with open(zip_path, "wb") as f: | |
# for chunk in r.iter_content(chunk_size=8192): | |
# f.write(chunk) | |
# print("📦 Extracting weights...") | |
# with zipfile.ZipFile(zip_path, "r") as zip_ref: | |
# zip_ref.extractall(weights_dir) | |
# os.remove(zip_path) | |
# print("✅ Weights ready.") | |
# # Загрузка моделей | |
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) | |
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) | |
# rmbg_net.eval() | |
# # Генерация .glb | |
# # def generate(image_path): | |
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
# print("[API CALL] image_path received:", image_path) | |
# print("[API CALL] File exists:", os.path.exists(image_path)) | |
# temp_id = str(uuid.uuid4()) | |
# output_path = f"/tmp/{temp_id}.glb" | |
# print("[DEBUG] Generating mesh from:", image_path) | |
# try: | |
# # mesh = run_triposg( | |
# # pipe=pipe, | |
# # image_input=image_path, | |
# # rmbg_net=rmbg_net, | |
# # seed=42, | |
# # num_inference_steps=25, | |
# # guidance_scale=5.0, | |
# # faces=-1, | |
# # ) | |
# mesh = run_triposg( | |
# pipe=pipe, | |
# image_input=image_path, | |
# rmbg_net=rmbg_net, | |
# seed=42, | |
# num_inference_steps=int(num_steps), | |
# guidance_scale=float(guidance_scale), | |
# faces=int(face_number), | |
# ) | |
# # if mesh is None: | |
# # raise ValueError("Mesh generation failed") | |
# # mesh.export(output_path) | |
# # print(f"[DEBUG] Mesh saved to {output_path}") | |
# # return output_path if os.path.exists(output_path) else "Error: output file not found" | |
# # if mesh is None: | |
# # raise ValueError("Mesh generation failed") | |
# # # Убираем визуал, метаданные, обертки | |
# # mesh.visual = None | |
# # mesh.metadata.clear() | |
# # mesh.name = "endless_tools" | |
# # # Экспорт только геометрии | |
# # glb_data = mesh.export(file_type="glb") | |
# # with open(output_path, "wb") as f: | |
# # f.write(glb_data) | |
# # print(f"[DEBUG] Mesh saved to {output_path}") | |
# # return output_path if os.path.exists(output_path) else "Error: output file not found" | |
# if mesh is None: | |
# raise ValueError("Mesh generation returned None") | |
# # Очистка визуала, метаданных и имени | |
# mesh.visual = None | |
# mesh.metadata.clear() | |
# mesh.name = "geometry_0" | |
# # glb_data = mesh.export(file_type="glb") | |
# glb_data = export_glb(mesh) | |
# with open(output_path, "wb") as f: | |
# f.write(glb_data) | |
# # Экспорт .glb вручную (иначе Trimesh добавляет сцену) | |
# # glb_data = mesh.export(file_type="glb") | |
# # with open(output_path, "wb") as f: | |
# # f.write(glb_data) | |
# print(f"[DEBUG] Mesh saved to {output_path}") | |
# return output_path if os.path.exists(output_path) else None | |
# # except Exception as e: | |
# # print("[ERROR]", e) | |
# # return f"Error: {e}" | |
# except Exception as e: | |
# # import traceback | |
# print("[ERROR]", e) | |
# traceback.print_exc() # ← выведет полную трассировку в логи | |
# return f"Error: {e}" | |
# # Интерфейс Gradio | |
# demo = gr.Interface( | |
# fn=generate, | |
# inputs=gr.Image(type="filepath", label="Upload image"), | |
# outputs=gr.File(label="Download .glb"), | |
# title="TripoSG Image to 3D", | |
# description="Upload an image to generate a 3D model (.glb)", | |
# ) | |
# # Запуск | |
# demo.launch() | |
# import os | |
# import subprocess | |
# # Убираем pyenv | |
# os.environ.pop("PYENV_VERSION", None) | |
# # Установка зависимостей | |
# subprocess.run(["pip", "install", "torch", "wheel"], check=True) | |
# subprocess.run([ | |
# "pip", "install", "--no-build-isolation", | |
# "diso@git+https://github.com/SarahWeiii/diso.git" | |
# ], check=True) | |
# # Импорты (перенесены после установки зависимостей) | |
# import gradio as gr | |
# import uuid | |
# import torch | |
# import zipfile | |
# import requests | |
# import traceback | |
# import trimesh | |
# from trimesh.exchange.gltf import export_glb | |
# from inference_triposg import run_triposg | |
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline | |
# from briarmbg import BriaRMBG | |
# print("Trimesh version:", trimesh.__version__) | |
# # Настройки устройства | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# dtype = torch.float16 if device == "cuda" else torch.float32 | |
# # Загрузка весов | |
# weights_dir = "pretrained_weights" | |
# triposg_path = os.path.join(weights_dir, "TripoSG") | |
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4") | |
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): | |
# print("📦 Downloading pretrained weights...") | |
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" | |
# zip_path = "pretrained_models.zip" | |
# with requests.get(url, stream=True) as r: | |
# r.raise_for_status() | |
# with open(zip_path, "wb") as f: | |
# for chunk in r.iter_content(chunk_size=8192): | |
# f.write(chunk) | |
# print("📦 Extracting weights...") | |
# with zipfile.ZipFile(zip_path, "r") as zip_ref: | |
# zip_ref.extractall(weights_dir) | |
# os.remove(zip_path) | |
# print("✅ Weights ready.") | |
# # Загрузка моделей | |
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) | |
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) | |
# rmbg_net.eval() | |
# # Генерация .glb | |
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
# print("[API CALL] image_path received:", image_path) | |
# print("[API CALL] File exists:", os.path.exists(image_path)) | |
# temp_id = str(uuid.uuid4()) | |
# output_path = f"/tmp/{temp_id}.glb" | |
# print("[DEBUG] Generating mesh from:", image_path) | |
# try: | |
# mesh = run_triposg( | |
# pipe=pipe, | |
# image_input=image_path, | |
# rmbg_net=rmbg_net, | |
# seed=42, | |
# num_inference_steps=int(num_steps), | |
# guidance_scale=float(guidance_scale), | |
# faces=int(face_number), | |
# ) | |
# if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: | |
# raise ValueError("Mesh generation returned an empty mesh") | |
# # Безопасная очистка визуала | |
# if hasattr(mesh, "visual") and mesh.visual is not None: | |
# try: | |
# mesh.visual = None | |
# except Exception: | |
# print("[WARN] Failed to clear visual, skipping") | |
# mesh.metadata.clear() | |
# mesh.name = "endless_tools_mesh" | |
# # Экспорт .glb | |
# # glb_data = export_glb(mesh) | |
# glb_data = mesh.export(file_type='glb') | |
# with open(output_path, "wb") as f: | |
# f.write(glb_data) | |
# print(f"[DEBUG] Mesh saved to {output_path}") | |
# return output_path if os.path.exists(output_path) else None | |
# except Exception as e: | |
# print("[ERROR]", e) | |
# traceback.print_exc() | |
# return f"Error: {e}" | |
# # Интерфейс Gradio | |
# demo = gr.Interface( | |
# fn=generate, | |
# inputs=gr.Image(type="filepath", label="Upload image"), | |
# outputs=gr.File(label="Download .glb"), | |
# title="TripoSG Image to 3D", | |
# description="Upload an image to generate a 3D model (.glb)", | |
# ) | |
# # Запуск | |
# demo.launch() | |
# import os | |
# import subprocess | |
# # Убираем pyenv | |
# os.environ.pop("PYENV_VERSION", None) | |
# # Установка зависимостей | |
# subprocess.run(["pip", "install", "torch", "wheel"], check=True) | |
# subprocess.run([ | |
# "pip", "install", "--no-build-isolation", | |
# "diso@git+https://github.com/SarahWeiii/diso.git" | |
# ], check=True) | |
# # Импорты (перенесены после установки зависимостей) | |
# import gradio as gr | |
# import uuid | |
# import torch | |
# import zipfile | |
# import requests | |
# import traceback | |
# import trimesh | |
# import numpy as np | |
# from trimesh.exchange.gltf import export_glb | |
# from inference_triposg import run_triposg | |
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline | |
# from briarmbg import BriaRMBG | |
# print("Trimesh version:", trimesh.__version__) | |
# # Настройки устройства | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# dtype = torch.float16 if device == "cuda" else torch.float32 | |
# # Загрузка весов | |
# weights_dir = "pretrained_weights" | |
# triposg_path = os.path.join(weights_dir, "TripoSG") | |
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4") | |
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): | |
# print("📦 Downloading pretrained weights...") | |
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" | |
# zip_path = "pretrained_models.zip" | |
# with requests.get(url, stream=True) as r: | |
# r.raise_for_status() | |
# with open(zip_path, "wb") as f: | |
# for chunk in r.iter_content(chunk_size=8192): | |
# f.write(chunk) | |
# print("📦 Extracting weights...") | |
# with zipfile.ZipFile(zip_path, "r") as zip_ref: | |
# zip_ref.extractall(weights_dir) | |
# os.remove(zip_path) | |
# print("✅ Weights ready.") | |
# # Загрузка моделей | |
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) | |
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) | |
# rmbg_net.eval() | |
# # Генерация .glb | |
# # def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
# # print("[API CALL] image_path received:", image_path) | |
# # print("[API CALL] File exists:", os.path.exists(image_path)) | |
# # temp_id = str(uuid.uuid4()) | |
# # output_path = f"/tmp/{temp_id}.glb" | |
# # print("[DEBUG] Generating mesh from:", image_path) | |
# # try: | |
# # mesh = run_triposg( | |
# # pipe=pipe, | |
# # image_input=image_path, | |
# # rmbg_net=rmbg_net, | |
# # seed=42, | |
# # num_inference_steps=int(num_steps), | |
# # guidance_scale=float(guidance_scale), | |
# # faces=int(face_number), | |
# # ) | |
# # if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: | |
# # raise ValueError("Mesh generation returned an empty mesh") | |
# # mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces) | |
# # mesh.rezero() | |
# # mesh.fix_normals() | |
# # mesh.apply_translation(-mesh.center_mass) | |
# # # Масштабируем, чтобы модель вписывалась в размер 1x1x1 | |
# # # Если нужно будет подгонять под размер в Endless Tools, то можно использовать: | |
# # # scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1)) | |
# # # mesh.apply_scale(scale_factor) | |
# # glb_data = mesh.export(file_type='glb') | |
# # with open(output_path, "wb") as f: | |
# # f.write(glb_data) | |
# # print(f"[DEBUG] Mesh saved to {output_path}") | |
# # return output_path if os.path.exists(output_path) else None | |
# # except Exception as e: | |
# # print("[ERROR]", e) | |
# # traceback.print_exc() | |
# # return f"Error: {e}" | |
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
# print("[API CALL] image_path received:", image_path) | |
# print("[API CALL] File exists:", os.path.exists(image_path)) | |
# temp_id = str(uuid.uuid4()) | |
# output_path = f"/tmp/{temp_id}.glb" | |
# print("[DEBUG] Generating mesh from:", image_path) | |
# try: | |
# mesh = run_triposg( | |
# pipe=pipe, | |
# image_input=image_path, | |
# rmbg_net=rmbg_net, | |
# seed=42, | |
# num_inference_steps=int(num_steps), | |
# guidance_scale=float(guidance_scale), | |
# faces=int(face_number), | |
# ) | |
# if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: | |
# raise ValueError("Mesh generation returned an empty mesh") | |
# # 🔧 Пересоздаём Trimesh и гарантируем чистоту геометрии | |
# mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=True) | |
# # ✅ Центрируем модель | |
# mesh.apply_translation(-mesh.center_mass) | |
# # ✅ Масштабируем к единичному размеру (все модели ~одинаковые) | |
# scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1)) | |
# mesh.apply_scale(scale_factor) | |
# # ✅ Гарантированно пересчитываем нормали | |
# mesh.fix_normals() | |
# # print("[DEBUG] Normals present:", mesh.has_vertex_normals) | |
# if hasattr(mesh, "vertex_normals"): | |
# print("[DEBUG] Normals shape:", mesh.vertex_normals.shape) | |
# else: | |
# print("[DEBUG] Normals missing.") | |
# # 💾 Сохраняем GLB | |
# glb_data = mesh.export(file_type='glb') | |
# with open(output_path, "wb") as f: | |
# f.write(glb_data) | |
# print(f"[DEBUG] Mesh saved to {output_path}") | |
# return output_path if os.path.exists(output_path) else None | |
# except Exception as e: | |
# print("[ERROR]", e) | |
# traceback.print_exc() | |
# return f"Error: {e}" | |
# # Интерфейс Gradio | |
# demo = gr.Interface( | |
# fn=generate, | |
# inputs=gr.Image(type="filepath", label="Upload image"), | |
# outputs=gr.File(label="Download .glb"), | |
# title="TripoSG Image to 3D", | |
# description="Upload an image to generate a 3D model (.glb)", | |
# ) | |
# # Запуск | |
# demo.launch() | |
import os | |
import subprocess | |
# Убираем pyenv | |
os.environ.pop("PYENV_VERSION", None) | |
# Установка зависимостей | |
subprocess.run(["pip", "install", "torch", "wheel"], check=True) | |
subprocess.run([ | |
"pip", "install", "--no-build-isolation", | |
"diso@git+https://github.com/SarahWeiii/diso.git" | |
], check=True) | |
# Импорты (перенесены после установки зависимостей) | |
import gradio as gr | |
import uuid | |
import torch | |
import zipfile | |
import requests | |
import traceback | |
import trimesh | |
import numpy as np | |
from trimesh.exchange.gltf import export_glb | |
from inference_triposg import run_triposg | |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline | |
from briarmbg import BriaRMBG | |
GLTF_PACK = "/tmp/gltfpack" | |
print("Trimesh version:", trimesh.__version__) | |
# Настройки устройства | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if device == "cuda" else torch.float32 | |
# Загрузка весов | |
weights_dir = "pretrained_weights" | |
triposg_path = os.path.join(weights_dir, "TripoSG") | |
rmbg_path = os.path.join(weights_dir, "RMBG-1.4") | |
if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): | |
print("📦 Downloading pretrained weights...") | |
url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" | |
zip_path = "pretrained_models.zip" | |
with requests.get(url, stream=True) as r: | |
r.raise_for_status() | |
with open(zip_path, "wb") as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
print("📦 Extracting weights...") | |
with zipfile.ZipFile(zip_path, "r") as zip_ref: | |
zip_ref.extractall(weights_dir) | |
os.remove(zip_path) | |
print("✅ Weights ready.") | |
# Загрузка моделей | |
pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) | |
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) | |
rmbg_net.eval() | |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
print("[API CALL] image_path received:", image_path) | |
print("[API CALL] File exists:", os.path.exists(image_path)) | |
temp_id = str(uuid.uuid4()) | |
output_path = f"/tmp/{temp_id}.glb" | |
print("[DEBUG] Generating mesh from:", image_path) | |
try: | |
mesh = run_triposg( | |
pipe=pipe, | |
image_input=image_path, | |
rmbg_net=rmbg_net, | |
seed=42, | |
num_inference_steps=int(num_steps), | |
guidance_scale=float(guidance_scale), | |
faces=int(face_number), | |
) | |
if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: | |
raise ValueError("Mesh generation returned an empty mesh") | |
# 🔧 Пересоздаём Trimesh и гарантируем чистоту геометрии | |
mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=True) | |
# ✅ Центрируем модель | |
mesh.apply_translation(-mesh.center_mass) | |
# ✅ Масштабируем к единичному размеру (все модели ~одинаковые) | |
scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1)) | |
mesh.apply_scale(scale_factor) | |
# ✅ Гарантированно пересчитываем нормали | |
mesh.fix_normals() | |
# print("[DEBUG] Normals present:", mesh.has_vertex_normals) | |
if hasattr(mesh, "vertex_normals"): | |
print("[DEBUG] Normals shape:", mesh.vertex_normals.shape) | |
else: | |
print("[DEBUG] Normals missing.") | |
# 💾 Сохраняем GLB | |
glb_data = mesh.export(file_type='glb') | |
with open(output_path, "wb") as f: | |
f.write(glb_data) | |
print(f"[DEBUG] Mesh saved to {output_path}") | |
return output_path if os.path.exists(output_path) else None | |
except Exception as e: | |
print("[ERROR]", e) | |
traceback.print_exc() | |
return f"Error: {e}" | |
# Интерфейс Gradio | |
demo = gr.Interface( | |
fn=generate, | |
inputs=gr.Image(type="filepath", label="Upload image"), | |
outputs=gr.File(label="Download .glb"), | |
title="TripoSG Image to 3D", | |
description="Upload an image to generate a 3D model (.glb)", | |
) | |
# Запуск | |
demo.launch() | |