etTripoSg-api-gradio / app_backlog.py
staswrs
add octree depth controls
e28dbf7
# import os
# import subprocess
# # Убираем pyenv, если вдруг остался .python-version
# os.environ.pop("PYENV_VERSION", None)
# # Установка зависимостей
# subprocess.run(["pip", "install", "torch", "wheel"], check=True)
# subprocess.run([
# "pip", "install", "--no-build-isolation",
# "diso@git+https://github.com/SarahWeiii/diso.git"
# ], check=True)
# # Импорты
# import gradio as gr
# import uuid
# import torch
# import zipfile
# import requests
# import traceback
# import trimesh
# from trimesh.exchange.gltf import export_glb
# print("Trimesh version:", trimesh.__version__)
# from inference_triposg import run_triposg
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline
# from briarmbg import BriaRMBG
# # Настройки устройства
# device = "cuda" if torch.cuda.is_available() else "cpu"
# dtype = torch.float16 if device == "cuda" else torch.float32
# # Загрузка весов
# weights_dir = "pretrained_weights"
# triposg_path = os.path.join(weights_dir, "TripoSG")
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
# print("📦 Downloading pretrained weights...")
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
# zip_path = "pretrained_models.zip"
# with requests.get(url, stream=True) as r:
# r.raise_for_status()
# with open(zip_path, "wb") as f:
# for chunk in r.iter_content(chunk_size=8192):
# f.write(chunk)
# print("📦 Extracting weights...")
# with zipfile.ZipFile(zip_path, "r") as zip_ref:
# zip_ref.extractall(weights_dir)
# os.remove(zip_path)
# print("✅ Weights ready.")
# # Загрузка моделей
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
# rmbg_net.eval()
# # Генерация .glb
# # def generate(image_path):
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
# print("[API CALL] image_path received:", image_path)
# print("[API CALL] File exists:", os.path.exists(image_path))
# temp_id = str(uuid.uuid4())
# output_path = f"/tmp/{temp_id}.glb"
# print("[DEBUG] Generating mesh from:", image_path)
# try:
# # mesh = run_triposg(
# # pipe=pipe,
# # image_input=image_path,
# # rmbg_net=rmbg_net,
# # seed=42,
# # num_inference_steps=25,
# # guidance_scale=5.0,
# # faces=-1,
# # )
# mesh = run_triposg(
# pipe=pipe,
# image_input=image_path,
# rmbg_net=rmbg_net,
# seed=42,
# num_inference_steps=int(num_steps),
# guidance_scale=float(guidance_scale),
# faces=int(face_number),
# )
# # if mesh is None:
# # raise ValueError("Mesh generation failed")
# # mesh.export(output_path)
# # print(f"[DEBUG] Mesh saved to {output_path}")
# # return output_path if os.path.exists(output_path) else "Error: output file not found"
# # if mesh is None:
# # raise ValueError("Mesh generation failed")
# # # Убираем визуал, метаданные, обертки
# # mesh.visual = None
# # mesh.metadata.clear()
# # mesh.name = "endless_tools"
# # # Экспорт только геометрии
# # glb_data = mesh.export(file_type="glb")
# # with open(output_path, "wb") as f:
# # f.write(glb_data)
# # print(f"[DEBUG] Mesh saved to {output_path}")
# # return output_path if os.path.exists(output_path) else "Error: output file not found"
# if mesh is None:
# raise ValueError("Mesh generation returned None")
# # Очистка визуала, метаданных и имени
# mesh.visual = None
# mesh.metadata.clear()
# mesh.name = "geometry_0"
# # glb_data = mesh.export(file_type="glb")
# glb_data = export_glb(mesh)
# with open(output_path, "wb") as f:
# f.write(glb_data)
# # Экспорт .glb вручную (иначе Trimesh добавляет сцену)
# # glb_data = mesh.export(file_type="glb")
# # with open(output_path, "wb") as f:
# # f.write(glb_data)
# print(f"[DEBUG] Mesh saved to {output_path}")
# return output_path if os.path.exists(output_path) else None
# # except Exception as e:
# # print("[ERROR]", e)
# # return f"Error: {e}"
# except Exception as e:
# # import traceback
# print("[ERROR]", e)
# traceback.print_exc() # ← выведет полную трассировку в логи
# return f"Error: {e}"
# # Интерфейс Gradio
# demo = gr.Interface(
# fn=generate,
# inputs=gr.Image(type="filepath", label="Upload image"),
# outputs=gr.File(label="Download .glb"),
# title="TripoSG Image to 3D",
# description="Upload an image to generate a 3D model (.glb)",
# )
# # Запуск
# demo.launch()
# import os
# import subprocess
# # Убираем pyenv
# os.environ.pop("PYENV_VERSION", None)
# # Установка зависимостей
# subprocess.run(["pip", "install", "torch", "wheel"], check=True)
# subprocess.run([
# "pip", "install", "--no-build-isolation",
# "diso@git+https://github.com/SarahWeiii/diso.git"
# ], check=True)
# # Импорты (перенесены после установки зависимостей)
# import gradio as gr
# import uuid
# import torch
# import zipfile
# import requests
# import traceback
# import trimesh
# from trimesh.exchange.gltf import export_glb
# from inference_triposg import run_triposg
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline
# from briarmbg import BriaRMBG
# print("Trimesh version:", trimesh.__version__)
# # Настройки устройства
# device = "cuda" if torch.cuda.is_available() else "cpu"
# dtype = torch.float16 if device == "cuda" else torch.float32
# # Загрузка весов
# weights_dir = "pretrained_weights"
# triposg_path = os.path.join(weights_dir, "TripoSG")
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
# print("📦 Downloading pretrained weights...")
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
# zip_path = "pretrained_models.zip"
# with requests.get(url, stream=True) as r:
# r.raise_for_status()
# with open(zip_path, "wb") as f:
# for chunk in r.iter_content(chunk_size=8192):
# f.write(chunk)
# print("📦 Extracting weights...")
# with zipfile.ZipFile(zip_path, "r") as zip_ref:
# zip_ref.extractall(weights_dir)
# os.remove(zip_path)
# print("✅ Weights ready.")
# # Загрузка моделей
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
# rmbg_net.eval()
# # Генерация .glb
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
# print("[API CALL] image_path received:", image_path)
# print("[API CALL] File exists:", os.path.exists(image_path))
# temp_id = str(uuid.uuid4())
# output_path = f"/tmp/{temp_id}.glb"
# print("[DEBUG] Generating mesh from:", image_path)
# try:
# mesh = run_triposg(
# pipe=pipe,
# image_input=image_path,
# rmbg_net=rmbg_net,
# seed=42,
# num_inference_steps=int(num_steps),
# guidance_scale=float(guidance_scale),
# faces=int(face_number),
# )
# if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
# raise ValueError("Mesh generation returned an empty mesh")
# # Безопасная очистка визуала
# if hasattr(mesh, "visual") and mesh.visual is not None:
# try:
# mesh.visual = None
# except Exception:
# print("[WARN] Failed to clear visual, skipping")
# mesh.metadata.clear()
# mesh.name = "endless_tools_mesh"
# # Экспорт .glb
# # glb_data = export_glb(mesh)
# glb_data = mesh.export(file_type='glb')
# with open(output_path, "wb") as f:
# f.write(glb_data)
# print(f"[DEBUG] Mesh saved to {output_path}")
# return output_path if os.path.exists(output_path) else None
# except Exception as e:
# print("[ERROR]", e)
# traceback.print_exc()
# return f"Error: {e}"
# # Интерфейс Gradio
# demo = gr.Interface(
# fn=generate,
# inputs=gr.Image(type="filepath", label="Upload image"),
# outputs=gr.File(label="Download .glb"),
# title="TripoSG Image to 3D",
# description="Upload an image to generate a 3D model (.glb)",
# )
# # Запуск
# demo.launch()
# import os
# import subprocess
# # Убираем pyenv
# os.environ.pop("PYENV_VERSION", None)
# # Установка зависимостей
# subprocess.run(["pip", "install", "torch", "wheel"], check=True)
# subprocess.run([
# "pip", "install", "--no-build-isolation",
# "diso@git+https://github.com/SarahWeiii/diso.git"
# ], check=True)
# # Импорты (перенесены после установки зависимостей)
# import gradio as gr
# import uuid
# import torch
# import zipfile
# import requests
# import traceback
# import trimesh
# import numpy as np
# from trimesh.exchange.gltf import export_glb
# from inference_triposg import run_triposg
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline
# from briarmbg import BriaRMBG
# print("Trimesh version:", trimesh.__version__)
# # Настройки устройства
# device = "cuda" if torch.cuda.is_available() else "cpu"
# dtype = torch.float16 if device == "cuda" else torch.float32
# # Загрузка весов
# weights_dir = "pretrained_weights"
# triposg_path = os.path.join(weights_dir, "TripoSG")
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
# print("📦 Downloading pretrained weights...")
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
# zip_path = "pretrained_models.zip"
# with requests.get(url, stream=True) as r:
# r.raise_for_status()
# with open(zip_path, "wb") as f:
# for chunk in r.iter_content(chunk_size=8192):
# f.write(chunk)
# print("📦 Extracting weights...")
# with zipfile.ZipFile(zip_path, "r") as zip_ref:
# zip_ref.extractall(weights_dir)
# os.remove(zip_path)
# print("✅ Weights ready.")
# # Загрузка моделей
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
# rmbg_net.eval()
# # Генерация .glb
# # def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
# # print("[API CALL] image_path received:", image_path)
# # print("[API CALL] File exists:", os.path.exists(image_path))
# # temp_id = str(uuid.uuid4())
# # output_path = f"/tmp/{temp_id}.glb"
# # print("[DEBUG] Generating mesh from:", image_path)
# # try:
# # mesh = run_triposg(
# # pipe=pipe,
# # image_input=image_path,
# # rmbg_net=rmbg_net,
# # seed=42,
# # num_inference_steps=int(num_steps),
# # guidance_scale=float(guidance_scale),
# # faces=int(face_number),
# # )
# # if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
# # raise ValueError("Mesh generation returned an empty mesh")
# # mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
# # mesh.rezero()
# # mesh.fix_normals()
# # mesh.apply_translation(-mesh.center_mass)
# # # Масштабируем, чтобы модель вписывалась в размер 1x1x1
# # # Если нужно будет подгонять под размер в Endless Tools, то можно использовать:
# # # scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1))
# # # mesh.apply_scale(scale_factor)
# # glb_data = mesh.export(file_type='glb')
# # with open(output_path, "wb") as f:
# # f.write(glb_data)
# # print(f"[DEBUG] Mesh saved to {output_path}")
# # return output_path if os.path.exists(output_path) else None
# # except Exception as e:
# # print("[ERROR]", e)
# # traceback.print_exc()
# # return f"Error: {e}"
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
# print("[API CALL] image_path received:", image_path)
# print("[API CALL] File exists:", os.path.exists(image_path))
# temp_id = str(uuid.uuid4())
# output_path = f"/tmp/{temp_id}.glb"
# print("[DEBUG] Generating mesh from:", image_path)
# try:
# mesh = run_triposg(
# pipe=pipe,
# image_input=image_path,
# rmbg_net=rmbg_net,
# seed=42,
# num_inference_steps=int(num_steps),
# guidance_scale=float(guidance_scale),
# faces=int(face_number),
# )
# if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
# raise ValueError("Mesh generation returned an empty mesh")
# # 🔧 Пересоздаём Trimesh и гарантируем чистоту геометрии
# mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=True)
# # ✅ Центрируем модель
# mesh.apply_translation(-mesh.center_mass)
# # ✅ Масштабируем к единичному размеру (все модели ~одинаковые)
# scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1))
# mesh.apply_scale(scale_factor)
# # ✅ Гарантированно пересчитываем нормали
# mesh.fix_normals()
# # print("[DEBUG] Normals present:", mesh.has_vertex_normals)
# if hasattr(mesh, "vertex_normals"):
# print("[DEBUG] Normals shape:", mesh.vertex_normals.shape)
# else:
# print("[DEBUG] Normals missing.")
# # 💾 Сохраняем GLB
# glb_data = mesh.export(file_type='glb')
# with open(output_path, "wb") as f:
# f.write(glb_data)
# print(f"[DEBUG] Mesh saved to {output_path}")
# return output_path if os.path.exists(output_path) else None
# except Exception as e:
# print("[ERROR]", e)
# traceback.print_exc()
# return f"Error: {e}"
# # Интерфейс Gradio
# demo = gr.Interface(
# fn=generate,
# inputs=gr.Image(type="filepath", label="Upload image"),
# outputs=gr.File(label="Download .glb"),
# title="TripoSG Image to 3D",
# description="Upload an image to generate a 3D model (.glb)",
# )
# # Запуск
# demo.launch()
import os
import subprocess
# Убираем pyenv
os.environ.pop("PYENV_VERSION", None)
# Установка зависимостей
subprocess.run(["pip", "install", "torch", "wheel"], check=True)
subprocess.run([
"pip", "install", "--no-build-isolation",
"diso@git+https://github.com/SarahWeiii/diso.git"
], check=True)
# Импорты (перенесены после установки зависимостей)
import gradio as gr
import uuid
import torch
import zipfile
import requests
import traceback
import trimesh
import numpy as np
from trimesh.exchange.gltf import export_glb
from inference_triposg import run_triposg
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
from briarmbg import BriaRMBG
GLTF_PACK = "/tmp/gltfpack"
print("Trimesh version:", trimesh.__version__)
# Настройки устройства
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# Загрузка весов
weights_dir = "pretrained_weights"
triposg_path = os.path.join(weights_dir, "TripoSG")
rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
print("📦 Downloading pretrained weights...")
url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
zip_path = "pretrained_models.zip"
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(zip_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
print("📦 Extracting weights...")
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(weights_dir)
os.remove(zip_path)
print("✅ Weights ready.")
# Загрузка моделей
pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
rmbg_net.eval()
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
print("[API CALL] image_path received:", image_path)
print("[API CALL] File exists:", os.path.exists(image_path))
temp_id = str(uuid.uuid4())
output_path = f"/tmp/{temp_id}.glb"
print("[DEBUG] Generating mesh from:", image_path)
try:
mesh = run_triposg(
pipe=pipe,
image_input=image_path,
rmbg_net=rmbg_net,
seed=42,
num_inference_steps=int(num_steps),
guidance_scale=float(guidance_scale),
faces=int(face_number),
)
if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
raise ValueError("Mesh generation returned an empty mesh")
# 🔧 Пересоздаём Trimesh и гарантируем чистоту геометрии
mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=True)
# ✅ Центрируем модель
mesh.apply_translation(-mesh.center_mass)
# ✅ Масштабируем к единичному размеру (все модели ~одинаковые)
scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1))
mesh.apply_scale(scale_factor)
# ✅ Гарантированно пересчитываем нормали
mesh.fix_normals()
# print("[DEBUG] Normals present:", mesh.has_vertex_normals)
if hasattr(mesh, "vertex_normals"):
print("[DEBUG] Normals shape:", mesh.vertex_normals.shape)
else:
print("[DEBUG] Normals missing.")
# 💾 Сохраняем GLB
glb_data = mesh.export(file_type='glb')
with open(output_path, "wb") as f:
f.write(glb_data)
print(f"[DEBUG] Mesh saved to {output_path}")
return output_path if os.path.exists(output_path) else None
except Exception as e:
print("[ERROR]", e)
traceback.print_exc()
return f"Error: {e}"
# Интерфейс Gradio
demo = gr.Interface(
fn=generate,
inputs=gr.Image(type="filepath", label="Upload image"),
outputs=gr.File(label="Download .glb"),
title="TripoSG Image to 3D",
description="Upload an image to generate a 3D model (.glb)",
)
# Запуск
demo.launch()