etTripoSg-api-gradio / image_process.py
staswrs
🔥 Clean redeploy with updated app.py
b2a27a7
# -*- coding: utf-8 -*-
import os
from skimage.morphology import remove_small_objects
from skimage.measure import label
import numpy as np
from PIL import Image
import cv2
from torchvision import transforms
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
def find_bounding_box(gray_image):
_, binary_image = cv2.threshold(gray_image, 1, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
max_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(max_contour)
return x, y, w, h
def load_image(img_path, bg_color=None, rmbg_net=None, padding_ratio=0.1):
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
if img is None:
return f"invalid image path {img_path}"
def is_valid_alpha(alpha, min_ratio = 0.01):
bins = 20
if isinstance(alpha, np.ndarray):
hist = cv2.calcHist([alpha], [0], None, [bins], [0, 256])
else:
hist = torch.histc(alpha, bins=bins, min=0, max=1)
min_hist_val = alpha.shape[0] * alpha.shape[1] * min_ratio
return hist[0] >= min_hist_val and hist[-1] >= min_hist_val
def rmbg(image: torch.Tensor) -> torch.Tensor:
image = TF.normalize(image, [0.5,0.5,0.5], [1.0,1.0,1.0]).unsqueeze(0)
result=rmbg_net(image)
return result[0][0]
if len(img.shape) == 2:
num_channels = 1
else:
num_channels = img.shape[2]
# check if too large
height, width = img.shape[:2]
if height > width:
scale = 2000 / height
else:
scale = 2000 / width
if scale < 1:
new_size = (int(width * scale), int(height * scale))
img = cv2.resize(img, new_size, interpolation=cv2.INTER_AREA)
if img.dtype != 'uint8':
img = (img * (255. / np.iinfo(img.dtype).max)).astype(np.uint8)
rgb_image = None
alpha = None
if num_channels == 1:
rgb_image = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
elif num_channels == 3:
rgb_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
elif num_channels == 4:
rgb_image = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
b, g, r, alpha = cv2.split(img)
if not is_valid_alpha(alpha):
alpha = None
else:
alpha_gpu = torch.from_numpy(alpha).unsqueeze(0).cuda().float() / 255.
else:
return f"invalid image: channels {num_channels}"
rgb_image_gpu = torch.from_numpy(rgb_image).cuda().float().permute(2, 0, 1) / 255.
if alpha is None:
resize_transform = transforms.Resize((384, 384), antialias=True)
rgb_image_resized = resize_transform(rgb_image_gpu)
normalize_image = rgb_image_resized * 2 - 1
mean_color = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).cuda()
resize_transform = transforms.Resize((1024, 1024), antialias=True)
rgb_image_resized = resize_transform(rgb_image_gpu)
max_value = rgb_image_resized.flatten().max()
if max_value < 1e-3:
return "invalid image: pure black image"
normalize_image = rgb_image_resized / max_value - mean_color
normalize_image = normalize_image.unsqueeze(0)
resize_transform = transforms.Resize((rgb_image_gpu.shape[1], rgb_image_gpu.shape[2]), antialias=True)
# seg from rmbg
alpha_gpu_rmbg = rmbg(rgb_image_resized)
alpha_gpu_rmbg = alpha_gpu_rmbg.squeeze(0)
alpha_gpu_rmbg = resize_transform(alpha_gpu_rmbg)
ma, mi = alpha_gpu_rmbg.max(), alpha_gpu_rmbg.min()
alpha_gpu_rmbg = (alpha_gpu_rmbg - mi) / (ma - mi)
alpha_gpu = alpha_gpu_rmbg
alpha_gpu_tmp = alpha_gpu * 255
alpha = alpha_gpu_tmp.to(torch.uint8).squeeze().cpu().numpy()
_, alpha = cv2.threshold(alpha, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
labeled_alpha = label(alpha)
cleaned_alpha = remove_small_objects(labeled_alpha, min_size=200)
cleaned_alpha = (cleaned_alpha > 0).astype(np.uint8)
alpha = cleaned_alpha * 255
alpha_gpu = torch.from_numpy(cleaned_alpha).cuda().float().unsqueeze(0)
x, y, w, h = find_bounding_box(alpha)
# If alpha is provided, the bounds of all foreground are used
else:
rows, cols = np.where(alpha > 0)
if rows.size > 0 and cols.size > 0:
x_min = np.min(cols)
y_min = np.min(rows)
x_max = np.max(cols)
y_max = np.max(rows)
width = x_max - x_min + 1
height = y_max - y_min + 1
x, y, w, h = x_min, y_min, width, height
if np.all(alpha==0):
raise ValueError(f"input image too small")
bg_gray = bg_color[0]
bg_color = torch.from_numpy(bg_color).float().cuda().repeat(alpha_gpu.shape[1], alpha_gpu.shape[2], 1).permute(2, 0, 1)
rgb_image_gpu = rgb_image_gpu * alpha_gpu + bg_color * (1 - alpha_gpu)
padding_size = [0] * 6
if w > h:
padding_size[0] = int(w * padding_ratio)
padding_size[2] = int(padding_size[0] + (w - h) / 2)
else:
padding_size[2] = int(h * padding_ratio)
padding_size[0] = int(padding_size[2] + (h - w) / 2)
padding_size[1] = padding_size[0]
padding_size[3] = padding_size[2]
padded_tensor = F.pad(rgb_image_gpu[:, y:(y+h), x:(x+w)], pad=tuple(padding_size), mode='constant', value=bg_gray)
return padded_tensor
def prepare_image(image_path, bg_color, rmbg_net=None):
if os.path.isfile(image_path):
img_tensor = load_image(image_path, bg_color=bg_color, rmbg_net=rmbg_net)
img_np = img_tensor.permute(1,2,0).cpu().numpy()
img_pil = Image.fromarray((img_np*255).astype(np.uint8))
return img_pil