Spaces:
Sleeping
Sleeping
staswrs
commited on
Commit
·
4763a4b
1
Parent(s):
3b1ae59
clean scene 11
Browse files- app.py +59 -15
- app_backlog.py +193 -64
- requirements.txt +1 -1
app.py
CHANGED
@@ -25,6 +25,10 @@ from inference_triposg import run_triposg
|
|
25 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
26 |
from briarmbg import BriaRMBG
|
27 |
|
|
|
|
|
|
|
|
|
28 |
|
29 |
print("Trimesh version:", trimesh.__version__)
|
30 |
|
@@ -67,7 +71,6 @@ def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
67 |
|
68 |
temp_id = str(uuid.uuid4())
|
69 |
output_path = f"/tmp/{temp_id}.glb"
|
70 |
-
print("[DEBUG] Generating mesh from:", image_path)
|
71 |
|
72 |
try:
|
73 |
mesh = run_triposg(
|
@@ -83,21 +86,62 @@ def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
83 |
if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
84 |
raise ValueError("Mesh generation returned an empty mesh")
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
print(f"[DEBUG] Mesh saved to {output_path}")
|
103 |
return output_path if os.path.exists(output_path) else None
|
@@ -106,7 +150,7 @@ def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
106 |
print("[ERROR]", e)
|
107 |
traceback.print_exc()
|
108 |
return f"Error: {e}"
|
109 |
-
|
110 |
# Интерфейс Gradio
|
111 |
demo = gr.Interface(
|
112 |
fn=generate,
|
|
|
25 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
26 |
from briarmbg import BriaRMBG
|
27 |
|
28 |
+
from pygltflib import GLTF2, Scene, Node, Mesh, Buffer, BufferView, Accessor, BufferTarget, ComponentType, AccessorType
|
29 |
+
import numpy as np
|
30 |
+
import base64
|
31 |
+
|
32 |
|
33 |
print("Trimesh version:", trimesh.__version__)
|
34 |
|
|
|
71 |
|
72 |
temp_id = str(uuid.uuid4())
|
73 |
output_path = f"/tmp/{temp_id}.glb"
|
|
|
74 |
|
75 |
try:
|
76 |
mesh = run_triposg(
|
|
|
86 |
if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
87 |
raise ValueError("Mesh generation returned an empty mesh")
|
88 |
|
89 |
+
vertices = mesh.vertices.astype(np.float32)
|
90 |
+
indices = mesh.faces.astype(np.uint32).flatten()
|
91 |
+
|
92 |
+
# Pack binary data
|
93 |
+
vertex_bytes = vertices.tobytes()
|
94 |
+
index_bytes = indices.tobytes()
|
95 |
+
total_bytes = vertex_bytes + index_bytes
|
96 |
|
97 |
+
buffer = Buffer(byteLength=len(total_bytes))
|
98 |
+
buffer_view_vert = BufferView(
|
99 |
+
buffer=0,
|
100 |
+
byteOffset=0,
|
101 |
+
byteLength=len(vertex_bytes),
|
102 |
+
target=BufferTarget.ARRAY_BUFFER.value
|
103 |
+
)
|
104 |
+
buffer_view_index = BufferView(
|
105 |
+
buffer=0,
|
106 |
+
byteOffset=len(vertex_bytes),
|
107 |
+
byteLength=len(index_bytes),
|
108 |
+
target=BufferTarget.ELEMENT_ARRAY_BUFFER.value
|
109 |
+
)
|
110 |
|
111 |
+
accessor_vert = Accessor(
|
112 |
+
bufferView=0,
|
113 |
+
byteOffset=0,
|
114 |
+
componentType=ComponentType.FLOAT.value,
|
115 |
+
count=len(vertices),
|
116 |
+
type=AccessorType.VEC3.value,
|
117 |
+
min=vertices.min(axis=0).tolist(),
|
118 |
+
max=vertices.max(axis=0).tolist()
|
119 |
+
)
|
120 |
+
|
121 |
+
accessor_index = Accessor(
|
122 |
+
bufferView=1,
|
123 |
+
byteOffset=0,
|
124 |
+
componentType=ComponentType.UNSIGNED_INT.value,
|
125 |
+
count=len(indices),
|
126 |
+
type=AccessorType.SCALAR.value
|
127 |
+
)
|
128 |
+
|
129 |
+
gltf = GLTF2(
|
130 |
+
buffers=[buffer],
|
131 |
+
bufferViews=[buffer_view_vert, buffer_view_index],
|
132 |
+
accessors=[accessor_vert, accessor_index],
|
133 |
+
meshes=[Mesh(primitives=[{
|
134 |
+
"attributes": {"POSITION": 0},
|
135 |
+
"indices": 1
|
136 |
+
}])],
|
137 |
+
scenes=[Scene(nodes=[0])],
|
138 |
+
nodes=[Node(mesh=0)],
|
139 |
+
scene=0
|
140 |
+
)
|
141 |
+
|
142 |
+
# Inject binary blob
|
143 |
+
gltf.set_binary_blob(total_bytes)
|
144 |
+
gltf.save_binary(output_path)
|
145 |
|
146 |
print(f"[DEBUG] Mesh saved to {output_path}")
|
147 |
return output_path if os.path.exists(output_path) else None
|
|
|
150 |
print("[ERROR]", e)
|
151 |
traceback.print_exc()
|
152 |
return f"Error: {e}"
|
153 |
+
|
154 |
# Интерфейс Gradio
|
155 |
demo = gr.Interface(
|
156 |
fn=generate,
|
app_backlog.py
CHANGED
@@ -1,9 +1,182 @@
|
|
1 |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import os
|
4 |
import subprocess
|
5 |
|
6 |
-
# Убираем pyenv
|
7 |
os.environ.pop("PYENV_VERSION", None)
|
8 |
|
9 |
# Установка зависимостей
|
@@ -13,7 +186,7 @@ subprocess.run([
|
|
13 |
"diso@git+https://github.com/SarahWeiii/diso.git"
|
14 |
], check=True)
|
15 |
|
16 |
-
# Импорты
|
17 |
import gradio as gr
|
18 |
import uuid
|
19 |
import torch
|
@@ -21,15 +194,15 @@ import zipfile
|
|
21 |
import requests
|
22 |
import traceback
|
23 |
import trimesh
|
24 |
-
from trimesh.exchange.gltf import export_glb
|
25 |
-
|
26 |
-
print("Trimesh version:", trimesh.__version__)
|
27 |
-
|
28 |
|
29 |
from inference_triposg import run_triposg
|
30 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
31 |
from briarmbg import BriaRMBG
|
32 |
|
|
|
|
|
|
|
33 |
# Настройки устройства
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
@@ -63,26 +236,15 @@ rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
|
63 |
rmbg_net.eval()
|
64 |
|
65 |
# Генерация .glb
|
66 |
-
# def generate(image_path):
|
67 |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
68 |
print("[API CALL] image_path received:", image_path)
|
69 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
70 |
|
71 |
temp_id = str(uuid.uuid4())
|
72 |
output_path = f"/tmp/{temp_id}.glb"
|
73 |
-
|
74 |
print("[DEBUG] Generating mesh from:", image_path)
|
75 |
|
76 |
try:
|
77 |
-
# mesh = run_triposg(
|
78 |
-
# pipe=pipe,
|
79 |
-
# image_input=image_path,
|
80 |
-
# rmbg_net=rmbg_net,
|
81 |
-
# seed=42,
|
82 |
-
# num_inference_steps=25,
|
83 |
-
# guidance_scale=5.0,
|
84 |
-
# faces=-1,
|
85 |
-
# )
|
86 |
mesh = run_triposg(
|
87 |
pipe=pipe,
|
88 |
image_input=image_path,
|
@@ -93,60 +255,31 @@ def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
93 |
faces=int(face_number),
|
94 |
)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
# mesh.export(output_path)
|
100 |
-
# print(f"[DEBUG] Mesh saved to {output_path}")
|
101 |
-
|
102 |
-
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
103 |
-
|
104 |
-
|
105 |
-
# if mesh is None:
|
106 |
-
# raise ValueError("Mesh generation failed")
|
107 |
-
|
108 |
-
# # Убираем визуал, метаданные, обертки
|
109 |
-
# mesh.visual = None
|
110 |
-
# mesh.metadata.clear()
|
111 |
-
# mesh.name = "endless_tools"
|
112 |
-
|
113 |
-
# # Экспорт только геометрии
|
114 |
-
# glb_data = mesh.export(file_type="glb")
|
115 |
-
# with open(output_path, "wb") as f:
|
116 |
-
# f.write(glb_data)
|
117 |
|
118 |
-
#
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
121 |
-
|
122 |
-
if mesh is None:
|
123 |
-
raise ValueError("Mesh generation returned None")
|
124 |
-
|
125 |
-
# Очистка визуала, метаданных и имени
|
126 |
-
mesh.visual = None
|
127 |
mesh.metadata.clear()
|
128 |
-
mesh.name = "
|
129 |
|
130 |
-
#
|
131 |
-
glb_data = export_glb(mesh)
|
|
|
132 |
with open(output_path, "wb") as f:
|
133 |
f.write(glb_data)
|
134 |
|
135 |
-
# Экспорт .glb вручную (иначе Trimesh добавляет сцену)
|
136 |
-
# glb_data = mesh.export(file_type="glb")
|
137 |
-
# with open(output_path, "wb") as f:
|
138 |
-
# f.write(glb_data)
|
139 |
-
|
140 |
-
|
141 |
print(f"[DEBUG] Mesh saved to {output_path}")
|
142 |
return output_path if os.path.exists(output_path) else None
|
143 |
-
|
144 |
-
# print("[ERROR]", e)
|
145 |
-
# return f"Error: {e}"
|
146 |
except Exception as e:
|
147 |
-
# import traceback
|
148 |
print("[ERROR]", e)
|
149 |
-
traceback.print_exc()
|
150 |
return f"Error: {e}"
|
151 |
|
152 |
# Интерфейс Gradio
|
@@ -160,7 +293,3 @@ demo = gr.Interface(
|
|
160 |
|
161 |
# Запуск
|
162 |
demo.launch()
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
1 |
|
2 |
|
3 |
+
# import os
|
4 |
+
# import subprocess
|
5 |
+
|
6 |
+
# # Убираем pyenv, если вдруг остался .python-version
|
7 |
+
# os.environ.pop("PYENV_VERSION", None)
|
8 |
+
|
9 |
+
# # Установка зависимостей
|
10 |
+
# subprocess.run(["pip", "install", "torch", "wheel"], check=True)
|
11 |
+
# subprocess.run([
|
12 |
+
# "pip", "install", "--no-build-isolation",
|
13 |
+
# "diso@git+https://github.com/SarahWeiii/diso.git"
|
14 |
+
# ], check=True)
|
15 |
+
|
16 |
+
# # Импорты
|
17 |
+
# import gradio as gr
|
18 |
+
# import uuid
|
19 |
+
# import torch
|
20 |
+
# import zipfile
|
21 |
+
# import requests
|
22 |
+
# import traceback
|
23 |
+
# import trimesh
|
24 |
+
# from trimesh.exchange.gltf import export_glb
|
25 |
+
|
26 |
+
# print("Trimesh version:", trimesh.__version__)
|
27 |
+
|
28 |
+
|
29 |
+
# from inference_triposg import run_triposg
|
30 |
+
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
31 |
+
# from briarmbg import BriaRMBG
|
32 |
+
|
33 |
+
# # Настройки устройства
|
34 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
# dtype = torch.float16 if device == "cuda" else torch.float32
|
36 |
+
|
37 |
+
# # Загрузка весов
|
38 |
+
# weights_dir = "pretrained_weights"
|
39 |
+
# triposg_path = os.path.join(weights_dir, "TripoSG")
|
40 |
+
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
|
41 |
+
|
42 |
+
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
|
43 |
+
# print("📦 Downloading pretrained weights...")
|
44 |
+
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
|
45 |
+
# zip_path = "pretrained_models.zip"
|
46 |
+
|
47 |
+
# with requests.get(url, stream=True) as r:
|
48 |
+
# r.raise_for_status()
|
49 |
+
# with open(zip_path, "wb") as f:
|
50 |
+
# for chunk in r.iter_content(chunk_size=8192):
|
51 |
+
# f.write(chunk)
|
52 |
+
|
53 |
+
# print("📦 Extracting weights...")
|
54 |
+
# with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
55 |
+
# zip_ref.extractall(weights_dir)
|
56 |
+
|
57 |
+
# os.remove(zip_path)
|
58 |
+
# print("✅ Weights ready.")
|
59 |
+
|
60 |
+
# # Загрузка моделей
|
61 |
+
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
|
62 |
+
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
63 |
+
# rmbg_net.eval()
|
64 |
+
|
65 |
+
# # Генерация .glb
|
66 |
+
# # def generate(image_path):
|
67 |
+
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
68 |
+
# print("[API CALL] image_path received:", image_path)
|
69 |
+
# print("[API CALL] File exists:", os.path.exists(image_path))
|
70 |
+
|
71 |
+
# temp_id = str(uuid.uuid4())
|
72 |
+
# output_path = f"/tmp/{temp_id}.glb"
|
73 |
+
|
74 |
+
# print("[DEBUG] Generating mesh from:", image_path)
|
75 |
+
|
76 |
+
# try:
|
77 |
+
# # mesh = run_triposg(
|
78 |
+
# # pipe=pipe,
|
79 |
+
# # image_input=image_path,
|
80 |
+
# # rmbg_net=rmbg_net,
|
81 |
+
# # seed=42,
|
82 |
+
# # num_inference_steps=25,
|
83 |
+
# # guidance_scale=5.0,
|
84 |
+
# # faces=-1,
|
85 |
+
# # )
|
86 |
+
# mesh = run_triposg(
|
87 |
+
# pipe=pipe,
|
88 |
+
# image_input=image_path,
|
89 |
+
# rmbg_net=rmbg_net,
|
90 |
+
# seed=42,
|
91 |
+
# num_inference_steps=int(num_steps),
|
92 |
+
# guidance_scale=float(guidance_scale),
|
93 |
+
# faces=int(face_number),
|
94 |
+
# )
|
95 |
+
|
96 |
+
# # if mesh is None:
|
97 |
+
# # raise ValueError("Mesh generation failed")
|
98 |
+
|
99 |
+
# # mesh.export(output_path)
|
100 |
+
# # print(f"[DEBUG] Mesh saved to {output_path}")
|
101 |
+
|
102 |
+
# # return output_path if os.path.exists(output_path) else "Error: output file not found"
|
103 |
+
|
104 |
+
|
105 |
+
# # if mesh is None:
|
106 |
+
# # raise ValueError("Mesh generation failed")
|
107 |
+
|
108 |
+
# # # Убираем визуал, метаданные, обертки
|
109 |
+
# # mesh.visual = None
|
110 |
+
# # mesh.metadata.clear()
|
111 |
+
# # mesh.name = "endless_tools"
|
112 |
+
|
113 |
+
# # # Экспорт только геометрии
|
114 |
+
# # glb_data = mesh.export(file_type="glb")
|
115 |
+
# # with open(output_path, "wb") as f:
|
116 |
+
# # f.write(glb_data)
|
117 |
+
|
118 |
+
# # print(f"[DEBUG] Mesh saved to {output_path}")
|
119 |
+
|
120 |
+
# # return output_path if os.path.exists(output_path) else "Error: output file not found"
|
121 |
+
|
122 |
+
# if mesh is None:
|
123 |
+
# raise ValueError("Mesh generation returned None")
|
124 |
+
|
125 |
+
# # Очистка визуала, метаданных и имени
|
126 |
+
# mesh.visual = None
|
127 |
+
# mesh.metadata.clear()
|
128 |
+
# mesh.name = "geometry_0"
|
129 |
+
|
130 |
+
# # glb_data = mesh.export(file_type="glb")
|
131 |
+
# glb_data = export_glb(mesh)
|
132 |
+
# with open(output_path, "wb") as f:
|
133 |
+
# f.write(glb_data)
|
134 |
+
|
135 |
+
# # Экспорт .glb вручную (иначе Trimesh добавляет сцену)
|
136 |
+
# # glb_data = mesh.export(file_type="glb")
|
137 |
+
# # with open(output_path, "wb") as f:
|
138 |
+
# # f.write(glb_data)
|
139 |
+
|
140 |
+
|
141 |
+
# print(f"[DEBUG] Mesh saved to {output_path}")
|
142 |
+
# return output_path if os.path.exists(output_path) else None
|
143 |
+
# # except Exception as e:
|
144 |
+
# # print("[ERROR]", e)
|
145 |
+
# # return f"Error: {e}"
|
146 |
+
# except Exception as e:
|
147 |
+
# # import traceback
|
148 |
+
# print("[ERROR]", e)
|
149 |
+
# traceback.print_exc() # ← ��ыведет полную трассировку в логи
|
150 |
+
# return f"Error: {e}"
|
151 |
+
|
152 |
+
# # Интерфейс Gradio
|
153 |
+
# demo = gr.Interface(
|
154 |
+
# fn=generate,
|
155 |
+
# inputs=gr.Image(type="filepath", label="Upload image"),
|
156 |
+
# outputs=gr.File(label="Download .glb"),
|
157 |
+
# title="TripoSG Image to 3D",
|
158 |
+
# description="Upload an image to generate a 3D model (.glb)",
|
159 |
+
# )
|
160 |
+
|
161 |
+
# # Запуск
|
162 |
+
# demo.launch()
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
import os
|
177 |
import subprocess
|
178 |
|
179 |
+
# Убираем pyenv
|
180 |
os.environ.pop("PYENV_VERSION", None)
|
181 |
|
182 |
# Установка зависимостей
|
|
|
186 |
"diso@git+https://github.com/SarahWeiii/diso.git"
|
187 |
], check=True)
|
188 |
|
189 |
+
# Импорты (перенесены после установки зависимостей)
|
190 |
import gradio as gr
|
191 |
import uuid
|
192 |
import torch
|
|
|
194 |
import requests
|
195 |
import traceback
|
196 |
import trimesh
|
197 |
+
from trimesh.exchange.gltf import export_glb
|
|
|
|
|
|
|
198 |
|
199 |
from inference_triposg import run_triposg
|
200 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
201 |
from briarmbg import BriaRMBG
|
202 |
|
203 |
+
|
204 |
+
print("Trimesh version:", trimesh.__version__)
|
205 |
+
|
206 |
# Настройки устройства
|
207 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
208 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
236 |
rmbg_net.eval()
|
237 |
|
238 |
# Генерация .glb
|
|
|
239 |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
240 |
print("[API CALL] image_path received:", image_path)
|
241 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
242 |
|
243 |
temp_id = str(uuid.uuid4())
|
244 |
output_path = f"/tmp/{temp_id}.glb"
|
|
|
245 |
print("[DEBUG] Generating mesh from:", image_path)
|
246 |
|
247 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
mesh = run_triposg(
|
249 |
pipe=pipe,
|
250 |
image_input=image_path,
|
|
|
255 |
faces=int(face_number),
|
256 |
)
|
257 |
|
258 |
+
if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
259 |
+
raise ValueError("Mesh generation returned an empty mesh")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
+
# Безопасная очистка визуала
|
262 |
+
if hasattr(mesh, "visual") and mesh.visual is not None:
|
263 |
+
try:
|
264 |
+
mesh.visual = None
|
265 |
+
except Exception:
|
266 |
+
print("[WARN] Failed to clear visual, skipping")
|
267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
mesh.metadata.clear()
|
269 |
+
mesh.name = "endless_tools_mesh"
|
270 |
|
271 |
+
# Экспорт .glb
|
272 |
+
# glb_data = export_glb(mesh)
|
273 |
+
glb_data = mesh.export(file_type='glb')
|
274 |
with open(output_path, "wb") as f:
|
275 |
f.write(glb_data)
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
print(f"[DEBUG] Mesh saved to {output_path}")
|
278 |
return output_path if os.path.exists(output_path) else None
|
279 |
+
|
|
|
|
|
280 |
except Exception as e:
|
|
|
281 |
print("[ERROR]", e)
|
282 |
+
traceback.print_exc()
|
283 |
return f"Error: {e}"
|
284 |
|
285 |
# Интерфейс Gradio
|
|
|
293 |
|
294 |
# Запуск
|
295 |
demo.launch()
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -15,4 +15,4 @@ jaxtyping
|
|
15 |
typeguard
|
16 |
pymeshlab
|
17 |
einops
|
18 |
-
|
|
|
15 |
typeguard
|
16 |
pymeshlab
|
17 |
einops
|
18 |
+
pygltflib
|